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ABSTRACT

We apply graph neural network (GNN) to a new area, knowledge tracing. Knowl-
edge tracing predicts student performance on coursework exercises over time.
From the viewpoint of data structure, coursework can be potentially structured
as a graph. Incorporating such a graph-structured nature to the knowledge tracing
model as a relational inductive bias can improve performance; however, previous
methods, such as Deep Knowledge Tracing (DKT), do not consider such a latent
graph structure. Inspired by the recent successes of GNN, we propose a GNN-
based knowledge tracing method, graph-based knowledge tracing (GKT). Casting
the knowledge structure as a graph, we reformulate the knowledge tracing task
as a time series node-level classification problem in GNN. Since the knowledge
graph structure is not explicitly given in many cases, we propose various imple-
mentations of the graph structure. Empirical validations on two open datasets
showed that our method outperforms past methods in predicting student perfor-
mance. Moreover, the model provides better interpretable predictions than the
previous methods.

1 INTRODUCTION

We apply graph neural network (GNN) to a new area, knowledge tracing (Corbett & Anderson,
1994), which entails predicting student performance on coursework exercises over time. Accurate
prediction helps students to identify contents suitable for their individual knowledge level and facil-
itates more efficient learning. From the viewpoint of data structure, coursework can be potentially
structured as a graph G = (V,E,A); the requirements for mastering the coursework are decom-
posed into N knowledge concepts, known as nodes V = {v1, · · · , vN}, and these concepts share
dependency relationships, known as edges E ⊆ V × V , where the degree of dependency is defined
by the adjacency matrix A ∈ RN×N . In addition, we assume a student having a temporal knowl-
edge state ht = {ht

i∈V } for each concept independently at time step t, and the knowledge state is
updated over time as follows: When the student answers an exercise associated with concept vi, the
student ’s knowledge state for not only the answered concept itself ht

i, but also for its neighboring
concepts ht

j∈Ni
is updated. Here, Ni denotes a set of nodes neighboring vi．

Incorporating such a graph-structured nature of knowledge into a knowledge tracing model as a re-
lational inductive bias can improve the model’s performance and interpretability (Battaglia et al.,
2018); however, previous methods do not consider such a nature. Knowledge tracing predicts
yt ≃ xt+1 based on the student ’s time-series exercise logs x1, · · · ,xt, where xt = {qt, rt} is a
tuple that considers an answered exercise qt as well as whether the exercise was answered correctly
rt. Deep Knowledge Tracing (DKT) (Piech et al., 2015) was the first deep learning-based method
that demonstrated remarkable performance compared to the traditional methods such as Bayesian
Knowledge Tracing (Corbett & Anderson, 1994). However, DKT adopted a simple recurrent neural
network (RNN) architecture and this caused two shortcomings: 1) Representing the student temporal
knowledge state using a single hidden vector complicated the modeling of the knowledge state for
each concept separately. 2) Simple model architecture that embeds an input vector and propagates
it to a recurrent layer made it difficult to model or reflect complex relationships between concepts.
Zhang et al. (2016) proposed Dynamic Key-Value Memory Network (DKVMN), which utilizes two
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Figure 1: Architecture of GKT. When a student answers a concept, GKT first aggregates node
features related to the answered concept, then updates the student’s knowledge states for only related
concepts, and finally predicts the probability of the student answering each concept correctly at the
next time step.

memory matrices and the simple attention mechanism to overcome these shortcomings; nonethe-
less, the model could not address complex and multiple relationships. Recent successes of GNN
inspired us to reformulate knowledge tracing as a GNN task and develop a new model to address
these shortcomings.

In this paper, we propose a GNN-based knowledge tracing method, graph-based knowledge tracing
(GKT). Casting the knowledge structure as a graph, where nodes correspond to concepts and edges
correspond to the relationships between them, we reformulate the knowledge tracing task as a time
series node-level classification problem in GNN. Empirical validations on two open datasets showed
that our method can predict student performance to a better degree, and the model shows more
interpretable predictions than the previous methods. Our contributions are as follows: 1) We show
that knowledge tracing can be reformulated as an application of GNN. 2) To implement the graph
structure that needs to be fed into the model, which is not explicitly given in many cases, we propose
various methods and compared them using empirical validations. 3) We show that the proposed
method results in more accurate and interpretable predictions than the previous deep learning-based
methods as it incorporates the graph-structured nature of knowledge.

2 GRAPH-BASED KNOWLEDGE TRACING

2.1 PROPOSED METHOD

GKT applies GNN to the knowledge tracing task and leverages the graph-structured nature of knowl-
edge. We present the architecture of GKT in Figure 1. The following paragraphs explain the pro-
cesses in detail.

Aggregate First, the model aggregates hidden states and embeddings for the answered concept i and
its neighboring concepts j ∈ Ni:

h
′t
k =

{
[ht

k,x
t Ex] (k = i)

[ht
k,Ec(k)] (k ̸= i)

where xt ∈ {0, 1}2N is an input vector that represents which exercise was answered correctly and
incorrectly at time step t, Ex ∈ R2N×e is a matrix embedding the concept index and response of
answers, Ec ∈ RN×e is a matrix embedding the concept index, Ec(k) represents the k-th row of
Ec, and e is the embedding size.

Update Next, the model updates the hidden states based on the aggregated features and the knowl-
edge graph structure:

mt+1
k =

{
fself(h

′t
k) (k = i)

fneighbor(h
′t
i,h

′t
k) (k ̸= i)

(1)

m̃t+1
k = Gea(m

t+1
k )

ht+1
k = Ggru(m̃

t+1
k ,ht

k)
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where fself is multilayer perceptron (MLP), Gea is an erase-add gate used in Zhang et al. (2016), and
Ggru is a gated recurrent unit (GRU) gate (Cho et al., 2014). fneighbor is an arbitrary function that
defines information propagation to neighboring nodes based on some knowledge graph structure,
and we propose various implementations of fneighbor in section 2.2.

Predict Finally, the model outputs the predicted probability of a student answering each concept
correctly at the next time step: yt

k = σ(Wouth
t+1
k + bk), where Wout is a weight matrix common

for all nodes, bk is a bias term for node k, and σ is a sigmoid function. The model is trained to
minimize the negative log-likelihood (NLL) of the observations.

2.2 IMPLEMENTATION OF LATENT GRAPH STRUCTURE AND fNEIGHBOR

GKT can leverage a graph-structured nature of knowledge for knowledge tracing; however, the
graph structure itself is not explicitly given in many cases. To implement the latent graph structure
and fneighbor in equation 1, we introduce two approaches.

Statistics-based Approach The statistics-based approach implements the adjacency matrix A based
on some statistics and applies it to fneighbor as follows:

fneighbor(h
′t
i,h

′t
j) = Ai,jfoutgo([h

′t
i,h

′t
j ]) +Aj,ifincome([h

′t
i,h

′t
j ]) (2)

where foutgo and fincome are MLP. Here, we introduce three types of graphs.

Dense Graph is a simple dense graph, where Ai,j is 1
|V |−1 if i ̸= j; else, it is 0.

Transition Graph is a transition probability matrix, where Ai,j is ni,j∑
k ni,k

if i ̸= j; else, it is 0. Here,
ni,j represents how many times concept j was answered just after concept i was answered.

DKT Graph is a graph generated based on the conditional prediction probability of the trained DKT
model, which was proposed by Piech et al. (2015).

Learning-based Approach The learning-based approach learns the graph structure in parallel with
the optimization of the performance prediction in an end-to-end manner. Here, we introduce three
methods to learn the graph structure.

Parametric Adjacency Matrix (PAM) simply parameterizes the adjacency matrix A and optimizes it
with other parameters under some constraints so that A satisfies the property of an adjacency matrix.
fneighbor is defined in the same manner as equation 2.

Multi-head Attention (MHA) leverages the multi-head attention mechanism (Vaswani et al., 2017)
to infer the edge weights between two nodes based on node features. fneighbor is defined as follows:

fneighbor(h
′t
i,h

′t
j) =

1

K

∑
k∈K

αk
ijfk(h

′t
i,h

′t
j)

where k is the head index among a total of K heads, αk
ij is the k-th head’s attention weight from vi

to vj , and fk is a neural network for the k-th head.

Variational Autoencoder (VAE) assumes the discrete latent variable that represents the types of edges
and infers them based on node features. fneighbor is defined as follows:

fneighbor(h
′t
i,h

′t
j) =

∑
k∈K

zkijfk(h
′t
i,h

′t
j)

where k is the edge type among a total of K types, zkij is a latent variable sampled from the Gumbel-
Softmax distribution (Maddison et al., 2016), and fk is a neural network for the k-th edge type. VAE
minimizes not only NLL but also the Kullback-Leibler divergence between the encoded distribution
q(z|x) and prior distribution p(z). Using one of the K edge types to represent the “non-edge” class,
which means that no messages are passed along this edge type, and setting high probability on the
“non-edge” label encourages generation of a sparse graph.

The learning-based approach is close to the idea of edge feature learning (Battaglia et al., 2016;
Gilmer et al., 2017; Chen et al., 2018), and MHA and VAE were motivated by graph attention net-
work (GAT) (Velickovic et al., 2017) and neural relational inference (NRI) (Kipf et al., 2018), re-
spectively; however, we modify them with regard to two points. First, we calculate the edge weights
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Table 1: Comparison of prediction performance.

Method AUC
ASSISTments KDDCup

Baseline DKT 0.709 0.751
DKVMN 0.710 0.753

Statistics-based
Dense Graph 0.722 0.762

Transition Graph 0.721 0.769
DKT Graph 0.723 0.764

Learning-based
PAM 0.719 0.762
MHA 0.723 0.766
VAE 0.722 0.769

based on static features such as embeddings of concepts and responses instead of dynamic features.
This enables us to learn a knowledge graph structure invariant to students and time steps, which
is more natural for knowledge tracing settings. Second, for VAE, we limit the edge-type inference
for nodes related to the answers at each time step. This fits the knowledge tracing situation where
students answer only a small subset of concepts at each time step, and it also helps to reduce the
computational cost from O(KN2) of the original NRI to O(KN).

3 EXPERIMENTS

Datasets For the experiments, we use two open datasets of student math exercise logs: ASSIST-
ments 2009-2010 “skill-builder” provided by the online educational service ASSISTments1 (here-
inafter called “ASSISTments”) and Bridge to Algebra 2006-2007 (Stamper et al., 2010) used in the
Educational Data Mining Challenge of KDDCup (hereinafter called “KDDCup”). We show prepro-
cessing procedures and the dataset statistics in Appendix A.

Prediction Performance First, we evaluate the prediction performance of GKT. We set DKT and
DKVMN as baselines and compare the Area Under the Curve (AUC) score of GKT with them.
We show the implementation details in Appendix B. We present the results in Table 1. We show
the highest scores in bold in each dataset. In both datasets, GKT showed the highest AUC score.
This suggests that GKT can trace student knowledge state better than the previous methods, which
do not consider the knowledge graph structure. In the statistics-based approaches, the Transition
Graph or DKT Graph outperformed the simple Dense Graph. This indicates that representing sparse
relationships between nodes in some way enables GKT to perform better. In the learning-based
approaches, MHA or VAE, which estimate edge information using the neural network based on node
features, performed better than the PAM, which simply optimizes the adjacency matrix. However,
the best performance of the statistics-based and learning-based approaches was almost similar, and
the methods that performed the best differed between the two datasets. Thus, further experiments
over various datasets are needed.

We present network analysis of the learned graph structure extracted from the trained GKT model
in Appendix C.

Interpretability of the Prediction Next, we visualize how the model predicted the student knowl-
edge state change over time and evaluate the interpretability of the prediction. This visualization
helps students and teachers to recognize the students’ knowledge state efficiently and intuitively,
and thus, its interpretability is important. Here, we evaluate interpretability based on the following
two points: 1) Whether the model updates only the related concepts to the answered concept at each
time step. 2) Whether the update is reasonable with the given graph structure. We randomly sample
a student and depict the student knowledge state change to a subset of concepts in Figures 2a and
2b. We show the depiction procedure in detail in Appendix D. The x-axis and the y-axis show the
time steps and concept indices respectively, and the cell color shows the extent to which the mastery
level changed at the time step. Green denotes an increase and red denotes a decrease. We fill the el-
ements answered correctly and incorrectly with “✓” and “×” respectively. From Figure 2a, we can
see that GKT clearly updates the knowledge state of related concepts only, although DKT updates

1
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
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Figure 2: Visualization of the transition of the predicted knowledge states for concept subsets.

that of all the concepts indistinctly and cannot model the change in related concepts. In addition,
Figure 2b shows that although concept 29 is not answered, its knowledge state is clearly updated
at t = 28. In that time step, concept 4 is answered correctly, and the given graph shows an edge
between concepts 4 and 29, as shown on the right-hand side of the figure. This suggests that GKT
models the student knowledge state definitively based on the given graph. However, DKT does not
display this behavior. These results show that GKT can model the student mastery level for each
concept distinctively and reasonably and provide interpretable prediction.

4 CONCLUSION

In this paper, we proposed a GNN-based knowledge tracing method called GKT. Casting the knowl-
edge structure as a graph, we reformulated the knowledge tracing task as a time-series node-level
classification problem in GNN. Empirical validations on two open datasets showed that our method
provides the best prediction of student performance and shows more interpretable predictions than
the previous methods. These results confirm the potential of our proposed method to enhance perfor-
mance and showcase the possibility of its application to real educational knowledge tracing environ-
ments, which could help improve the learning experience of students in more diverse environments.
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A DATASET PREPROCESSING

We preprocess each dataset using the following conditions.

ASSISTments
1. Combine simultaneous answer logs into one.
2. From 1, extract the logs associated with the named skill tags.
3. From 2, extract the logs associated with the skill tags answered at least 10 times.

KDDCup
1. Consider the combination of problem and step as one answer.
2. From 1, extract the logs associated with the skill tags that are named and are not dummies.
3. From 2, extract the logs associated with the skill tags answered at least 10 times.

Combining simultaneous answer logs into one set prevents unfairly high prediction performance
because of frequently co-occurring tags. Excluding skill tags that are unnamed or dummies removes
noise. Thresholding logs with the number of times each skill tag was answered secures a sufficient
number of logs in order to remove the noise. The statistics of the datasets preprocessed using the
above conditions are shown in Table 2.

B IMPLEMENTATION DETAILS

For each dataset, we divide the students into training:validation:test = 8:1:1. We train the model
with the training students’ data and adjust the hyperparameters with the validation students’ data.

DKT We search for the hyperparameters following Piech et al. (2015). The size of the hidden layer
is 200 and we use GRU for RNN. We apply dropout from ht to yt with a drop rate of 0.5. The batch
size is 32, and we use Adam (Kingma & Ba, 2014) as an optimizer with a learning rate of 0.001.

DKVMN We search for hyperparameters following Zhang et al. (2016). The size of the memory
slot is 20 for the ASSISTments dataset and 50 for the KDDCup dataset. The size of the hidden
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Figure 3: Network visualizations of graphs derived from DKT and GKT.

vector is 32 for the ASSISTments dataset and 128 for the KDDCup dataset. The batch size is 32,
and we use Adam as an optimizer with a learning rate of 0.001.

GKT The size of all hidden vectors and embedding matrix is 32. For the MLPs in the model, we
apply dropout from the hidden vectors to the output vectors with a drop rate of 0.5, and apply batch
normalization (Ioffe & Szegedy, 2015) for the output layers. The batch size is 16, and we use Adam
as an optimizer with a learning rate of 0.01. We set K = 2 in MHA and VAE to fairly compare the
learning-based approaches with the statistics-based approaches, since the statistics-based approaches
assume two edge types: incoming edges and outgoing edges.

C NETWORK ANALYSIS

We extract the learned graph structure from the trained GKT model and analyze it. In the learning-
based approaches, GKT learns the graph structure that helps to predict student performance. Thus,
the graph extracted from the model that showed the high prediction performance can provide insights
regarding a good knowledge structure. We show the networks in Figure 3. The color of the nodes is
graded from blue to red, where the earlier an exercise is answered, the bluer the shade. The size of the
nodes is proportional to their out-degree, which means that larger nodes influence more nodes. First,
in the DKT Graph, which is visualized for comparison, similarly colored nodes are connected with
each other, constructing clusters. As DKT models hidden states of all concepts with the same single
hidden vector, modeling long time dependency between concepts is difficult. Thus, the model tends
to learn the dependencies between nodes that are answered in a temporally close order. The graph
extracted from PAM had a structure similar to that of the DKT Graph and constructed clusters; from
the top right of the figure, we can perceive that some geometrical concepts are connected. The graph
extracted from MHA shows many out-coming edges from certain nodes. Although it is probable that
the model learned some special dependencies between concepts that differ from those in the other
graphs, the model’s prediction can be biased. Thus, we need to evaluate the effect on the prediction
performance. The graph extracted from VAE differed from the other graphs in that it formed a dense
graph, where many nodes were connected with each other. Although many of these connections
are difficult for us to interpret, from the bottom right of the figure, we can identify some statistical
concepts are connected.
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D KNOWLEDGE STATE CHANGE DEPICTION

Piech et al. (2015) and Zhang et al. (2016) performed analysis called knowledge state depiction to
visualize the temporal transition in student knowledge state. Our study extends this analysis as
follows to analyze the temporal transition more precisely for each concept at each time step.

1. Randomly sample a student log until time step T .
2. Remove bias vectors from the output layers in each trained model.
3. Input the student answer logs xt≤T to the trained model and stack the output yt≤T .
4. Normalize the output values at each time step from 0 to 1.
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