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ABSTRACT

In robotics, tactile sensors provide useful contact data during the interaction with
an object which can be used to determine the stability of a grasp. Previous works
represented tactile readings as plain feature vectors or matrix-like tactile images.
In this work, we explore an alternative way of exploiting tactile information to pre-
dict grasp stability by leveraging graph-like representations of tactile data, which
preserve the actual spatial arrangement of the sensor’s taxels and their locality.

1 INTRODUCTION

When we humans grasp objects, we can accurately predict the stability of the grasp using our tactile
sense, along with our vision and other senses. This skill is desirable for any robotic manipulator since
it favors the early detection of failures. In order to approach a solution to the problem of predicting
grasp stability, tactile sensors are being used as the main source of data since they provide valuable
information about the acting forces during the interaction of the hand with the objects (Kappassov
et al., 2015). As for the stability prediction, two states are usually distinguished: stable, meaning
that the object is firmly grasped; or slippery, meaning that the object could slide from the hand.

In the last years, deep learning models are being applied to the problem of grasp stability prediction
using tactile sensors as input. Kwiatkowski et al. (2017) built a composite image by placing the
readings of two matrix-like sensors side by side. Then, they used this tactile image as input for a
Convolutional Neural Network (CNN) along with the proprioceptive data from the robot. As a result,
the proposed method calculated by itself the features needed for predicting grasp stability. In some
other cases, the tactile sensor is not naturally arranged in an array so a pre-processing is necessary.
For example, Zapata-Impata et al. (2018) studied how the readings from a non-matrix like sensor
should be arranged in a matrix in order to train a CNN for grasp stability prediction. Although their
work showed promising results, the spatial distribution of the sensor was not accurately reflected
because it reduced the 3D locations of the taxels into 2D coordinates of an image.

Lately, Graph Neural Networks (GNNs) have emerged as an alternative to process irregular data
which can be structured as graphs. Various works have successfully made use of them to deal
with unstructured 3D representations mainly in classification tasks. Most of them have proposed
extensions to the well-known CNN architecture to process graph-structured data (Ying et al., 2018),
(Zhang et al., 2018) and others have also extended Recurrent Neural Network (RNN) architectures
to support inference on graph sequences (Li et al., 2015; Sanchez-Gonzalez et al., 2018).

However, the generalization of those traditional architectures is not trivial since various problems
must be addressed when applying convolution filters in domains in which there is no regular struc-
ture. In that regard, there are two dominant ways to convolve a graph signal with a learned filter:
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spatial or spectral. On the one hand, spectral methods are characterized by providing a spectral
graph theoretical formulation of CNN on graphs using Graph Signal Processing (GSP) theory (Shu-
man et al., 2013). On the other hand, spatial methods (Bruna et al., 2013; Kipf & Welling, 2016;
Defferrard et al., 2016) constitute the straightforward generalization of convolutions to graphs, just
by sliding a filter on the vertices as a traditional CNN does with any other structured data repre-
sentation. Nevertheless, the borders between those two approaches are being progressively blurred
thanks to the unification provided by message passing networks (Gilmer et al., 2017).

Following the success of GNNs in various fields in general and in certain robotic tasks in particular,
such as robot team coordination (Prorok, 2018) and policy learning (Wang et al., 2018), we intend
to use a GNN to process tactile sensor readings and predict grasp stability. By doing so, we expect
that such architecture is able to better capture the spatial locality and relationships of the tactile
sensor readings expressed as graphs. In contrast with previous works, in which tactile readings are
processed as classic signals, we propose the use of graphs for representing tactile data. Graphs can
reflect more accurately the real distribution of the electrodes in the sensor as well as their spatial
relationships, which should be of great value for learning tactile features. Our contributions are as
follows:

• We process tactile readings differently: instead of considering them as 1D arrays or 2D
images, we build a 3D graph connecting the sensing points of the sensor.

• We quantitatively check the performance of this new methodology in the real world using
a set of tactile sensors installed in a robotic hand.

• We release an extension (with more objects and grasps configurations) of a dataset for
robotic grasp stability prediction using tactile perception.

2 PROPOSAL

2.1 ROBOTIC SET UP

In this work, we use the BioTac SP tactile sensors developed by Syntouch (2018). The sensor
provides three different sensory modalities: force, pressure and temperature. In more detail, this
biomimetic sensor counts with 24 electrodes, also named taxels, integrated in just a single phalanx.
For our work, we use a setup of three BioTac SP sensors in the tip of the index, middle finger and
thumb of a Shadow Dexterous robotic hand developed by Shadow Robot Company (2018).

2.2 TACTILE GRAPHS

Figure 1: (left) BioTac SP tactile sensor with its 24 electrodes approximated position. (right) 3D
visualization of the tactile graph layout using the accurate spatial arrangement from the actual sensor.

In order to feed our Graph Neural Network, we expressed the aforementioned sensor readings in a
novel graph representation, namely tactile graphs. Such graphs are triplet G = (N,E, Y ) where N
is a set of 24 nodes n0, ..., n23 (one for each electrode or taxel in the sensor), E is a set of ordered
pair of vertices called edges, and Y is the label or class of the graph (in our case, stable or unstable).
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Each node n in the graph G is characterized by a 3D position pn = (xn, yn, zn) and a feature vector
fn = (fn0

, ..., fnF
) of arbitrary length F . Node positions pn are accurately mapped to the physical

taxel (X,Y, Z) coordinates within the sensor, provided by the manufacturer. Edges or connections
are generated following two different approaches: manual or k-Nearest Neighbors (k-NN). For the
first approach, we manually specified undirected connections following proximity and symmetry
criteria. For the second one, we generated directed edges towards each k-Nearest Neighbors for
each node. Figure 1 shows a BioTac SP sensor and a 3D tactile graph representing its taxels. Node
features fn correspond to the taxel pressure readings. In our case, each node has three features,
i.e., the pressure reading for each finger: index fn0 , middle fn1 , and thumb fn2 . Figure 2 shows
visualizations of the three features for a sample generated with k = 0 (manually defined edges)

Figure 2: Un-directed tactile graphs generated with manually defined edges. The three features fn0
,

fn1
, and fn2

are decoupled into three plots and represented as contour plots in the XY plane.

2.3 GRAPH NEURAL NETWORK

Our Graph Neural Network (GNN) of choice is based on the Graph Convolutional Network (GCN)
model by Kipf & Welling (2016). The goal of such model is to learn features on a graph G =
(N,E, Y ) by taking as input a feature matrix X (N × F with a feature vector fn for each node
n) and a description of the graph structure in the shape of an adjacency matrix A. The output is
another feature matrix Z (N × F ′ with node-level feature vectors f ′n with a predefined number of
output features F ′). Each GCN layer H(l) in a network with L layers can be expressed as a non-
linear function H(l+1) = f(H(l), A). The first layer takes the input feature matrix (H(0) = X)
and the final layer generates the output node-level feature matrix (Z = H(L)). Each intermediate
layer generates a node-level feature matrix Z(l) which is fed to the next layer. In the case of Kipf &
Welling (2016), the graph-convolution layer f(H(l), A) is defined, in the most basic instantiation,
as σ(AH(l)W (l)), where σ is an activation function and W (l) is the weight matrix for the l layer.

This basic framework was heavily extended to overcome two limitations: (1) unless there are ex-
plicitly defined self-loops in the graph, the multiplication of A only sums up the feature vectors of
all the neighboring nodes but not the node itself, and (2) since A is not normalized by default, the
multiplication of A has a huge impact on the scale of the feature vectors. Those two improvements
form the layer propagation rule Kipf & Welling (2016): f(H(l), A) = σ(D̂−

1
2 ÂD̂−

1
2H(l)W (l)).

This is the GCNConv operator we used to build our GNN.

However, it is important to remark again that this model produces a feature matrix with node-level
feature vectors yet our problem needs to classify the whole graph either as stable or slippery. To
produce such binary graph-level classification output we introduced pooling operations to reduce the
amount of nodes in the graph and fully connected layers to perform high-level reasoning. However,
after preliminary experiments with Graclus ? and Voxel Grid ? pooling, we found out that our
model performed better without them so we removed those layers for our final experiments. We
hypothesize that our spatial size is already small enough to reduce it even more.
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3 EXPERIMENTAL EVALUATION

The dataset used in our experiments contains grasp samples performed over 51 objects with different
geometries (i.e. cylinders, spheres, boxes), materials (i.e. wood, plastic, aluminum), stiffness levels
(i.e. solid, soft) as well as sizes and weights. There are three hand configurations used for recording
the grasp data: palm down grasps were performed pointing the palm of the hand downwards, palm
side grasps were recorded pointing it to one side, with the thumb upwards, and palm 45 which is
in between the other two configurations at an angle of 45 degrees. Table 1 provides a quantitative
summary of the dataset for both splits and all configurations (see Supplementary Material for more
detailed information).

Table 1: Summary of the tactile dataset used in this work to validate our architecture.

Training Set Test Set
Configuration Stable Slippery Stable Slippery
Palm Down 667 609 153 163
Palm Side 603 670 157 165
Palm 45 1058 1075 250 261

We investigated the impact of network depth (convolution layers) and width (amount of features per
layer). To that end, we have tested ten different models ranging from one to ten GCNConv layers
with increasing number of features (8, 16, 32, 48, 64). Rectified Linear Unit (ReLU) activations
were used after each convolutional layer. Two fully connected layers were also placed at the end of
the network (with 128 and 2 output features respectively) to produce the classification result. We
used the manually defined graph connections (k = 0). Figure 3 (left) shows the results of this set of
experiments.

1 2 3 4 5 6 7 8 910
0.8

0.9

1

Network Depth [layers]

A
cc

ur
ac

y
[%

/1
00

]

Validation Accuracy vs Network Size

Width 8
Width 16
Width 32
Width 48
Width 64

0 2 4 6 8 1012141618202224
0.5
0.6
0.7
0.8
0.9
1

Connectivity [k]

Validation Accuracy vs Connectivity

Figure 3: Performance according to network size (left) graph connectivity (right).

We experimented with manually specified edges (k = 0) and the k-NN strategy with k = [1, 23].
As shown in Figure 3 (right), the performance of the network degraded as the connectivity of the
graph increased. Using the k-NN strategy, smaller k values achieved greater performance in terms
of validation accuracy. However, none of them improved the performance (92.7%) yielded by the
network trained with the graph created using the manual connectivity (k = 0).

In order to prove the generalization capabilities of our system, we trained our best network (5 layers
whose widths were 8− 8− 16− 16− 32 and k = 0) with our whole training set and evaluated it on
the test sets. All results are reported in Table 2. There is a significant drop in accuracy when dealing
with completely unknown objects. Recall that the test set consists of new objects with different
geometries and stiffness levels so they are substantially different from the training set, even though
the hand orientations were the same as in the training set. We carried out the same generalization
test with the best CNN configuration found by Zapata-Impata et al. (2018), using it as baseline for
comparison purposes. More precisely, we trained a CNN with 32 convolutional 3x3 filters followed
by a ReLU and a fully connected layer of 1024 ReLUs. Then, this layer was connected to a softmax
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layer in order to classify grasps. The input for this network were 2D tactile images concatenated in
a 12x11x3 tensor. Results are presented in Table 3.

Table 2: Results of generalization experiments with the proposed TactileGCN.

Test Set Accuracy Precision Recall F1
Down 0.741 0.741 0.751 0.745

45 0.774 0.774 0.783 0.778
Side 0.751 0.785 0.709 0.745

Table 3: Results of generalization experiments on the testing splits with the baseline CNN.

Test Set Accuracy Precision Recall F1
Down 0.829 0.936 0.717 0.812

45 0.763 0.860 0.639 0.734
Side 0.708 0.858 0.515 0.643

Results from Table 2 and Table 3 suggest that GCNs have a more robust performance with an average
F1 score between test sets of 75.6%± 1.1%. In contrast, the CNN showed a less stable performance
with lower average F1 rate (72.9%±6.9%). This baseline model learned much better how to predict
grasps stability from grasps in the palm down orientation, even achieving higher rates than the GCN.
However, its performance dropped on the other two orientations. Since the input to the CNN was a
generated 2D tactile image, orientations highly affected the distribution of stability patterns inside
of it. Thanks to the more appropriate representation given by graphs, the GCN seems to be robust
to these changes in hand’s orientations, resulting in similar performance rates independently of the
test set.

The implementation of our architecture is fully available at the following GitHub repository with
open-source license: https://github.com/3dperceptionlab/tactile-gcn.

4 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

Graph representations of tactile readings can be successfully used for learning the task of grasp
stability prediction. Nevertheless, there are some problems that must be solved: (1) defining a proper
graph connectivity, (2) GCNs proved to be data hungry models for learning, (3) generalization to
radically new objects has still a lot of room for improvement. As a future work, we also plan to
decouple the currently unified GCN for the three fingers so that each graph is processed by a different
network path. Furthermore, we plan to model the noise of each individual taxel and augment each
sample on the fly by adding random noise following each taxel’s distribution. At last, we plan to
extend the architecture to predict grasp stability over temporal sequences by fusing the GCN model
with others like Long Short-Term Memory Network (LSTM).
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