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ABSTRACT

Graph Neural Nets (GNNs) have received increasing attentions, partially due to
their superior performance in many node and graph classification tasks. However,
there is a lack of understanding on what they are learning and how sophisticated
the learned graph functions are. In this work, we propose Graph Feature Network
(GFN), a simple lightweight neural net defined on a set of graph augmented
features. GFN can be used to approximate GNNs with improved efficiency, and
serve as a tool to access and understand the graph functions learned. To our
surprise, we find that, despite its simplicity, GFN could match or exceed the best
accuracies produced by recently proposed GNNs on common graph classification
benchmarks. Our results seemingly suggest that (1) GFN may serve as an efficient
and effective alternative to GNNs, and (2) existing GNNs may not have learned
more sophisticated graph functions on these benchmarks. Furthermore, we observe
that when treating images as pixels defined in graphs/grids, the same type of GNNs
can outperform GFN, indicating GNNs may have learned more complex graph
functions in that case/[l]

1 INTRODUCTION

Recent years have seen increasing attentions on Graph Neural Nets (GNNs) (Scarselli et al., [2009; L1
et al.| 2015} Defferrard et al., 2016; Kipf & Welling,|2016), which have achieved superior performance
in many graph tasks, such as node classification (Kipf & Welling| 2016; Wu et al.,[2019) and graph
classification (Simonovsky & Komodakis, 2017} |Xiny1 & Chenl 2019). Different from traditional
neural networks that are defined on regular structures such as sequences or images, graphs provide
more general abstraction of data, which subsume regular structures as special cases. The power of
GNN s is that they can directly define learnable compositional function on (arbitrary) graphs, thus
extending classic networks (e.g. Convolutional Neural Nets, Recurrent Neural Nets) to more irregular
and general domains.

Despite their success, it is unclear what GNNs are learning, and how complex the learned graph
functions are. It is shown in (Zeiler & Fergus| [2014) that traditional CNNs used in image recognition
have learned complex hierarchical and compositional features, and that deep non-linear computation
is beneficial |[He et al.|(2016)). Is it also the case when applying GNNs to common graph problems?
Recently, [Wu et al.|(2019) have shown that, for common node classification benchmarks, non-linearity
can be removed in GNNs without suffering much loss of performance. The resulting linear GNN’s
collapse into a logistic regression on propagated graph features. This raises doubts on the necessity of
complex GNNs, which require much more expensive computation, for node classification benchmarks.
Here we take a step further, and examine necessity of complex GNNs on more challenging graph
classification benchmarks (Yanardag & Vishwanathan, 2015 |[Zhang et al., 2018} | Xinyi & Chenl
2019).

In this work, we propose Graph Feature Network (GFN), a simple lightweight neural net defined on
a set of graph augmented features. Unlike GNNs, which learn a multi-step neighbor aggregation
function on graphs (Dai et al.| 20165 Gilmer et al.,2017), the GFN only utilizes graphs in constructing
its input features. It first augments nodes with graph structural and propagated features, and then
learns a neural net directly on the set of nodes (i.e. a bag of graph pre-processed feature vectors).
Therefore, GFN is lightweight, and can be used to approximate GNNs with improved efficiency.

'Our code is available at: https://github.com/chentingpc/gfn.
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Empirically, we evaluate the model on common graph classification benchmarks (Yanardag &
'Vishwanathan, [2015; Zhang et al., 2018}; Xiny1 & Chen, |2019)), and find that GFN can achieve results
on par with recently proposed GNNs. We interpret these results in two ways: (1) GFN is a good
approximation to GNNs with improved efficiency, and (2) the examined GNNs may not have learned
more sophisticated patterns for existing benchmarks. Interestingly, when treating images as pixels
defined in graphs/grids, the same type of GNNs can outperform GFN, suggesting GNNs may learn
more complex graph functions in that case.

2 GRAPH FEATURE NETWORK
The proposed GFN is a neural set function defined on a set of graph augmented features.

Graph augmented features. A GFN can leverage all types of graph augmented features based on G.
In this work, we consider two categories as follows: (1) Graph structural/topological features. These
are the features related to the intrinsic graph structures which do not rely on node attributes, such as
node degrees, node centrality scoref]; (2) Graph propagated features, which leverage the graph as a
medium to propagate node attributes. More specifically, we combine both features, and construct a
multi-scale graph augmented features as follows.

X% ={d, X, A'X, A%X,... AKX},

where A = D~ '/2(A 4 eI)D~'/2 is the normalized adjacency matrix, and d € R™*! is the
degree vector for all nodes. In practice, many graph classification problems have categorical/one-
hot node attributes (Yanardag & Vishwanathan|, 2015} [Kipf & Welling) [2016)), which make linear
propagation much more sensible. To deal with propagation of continuous features such as node
degrees, discretization can be leveraged |Xu et al.[(2019).

Neural set function. With graph augmented features X“, GFN discards the graph structures and
simply treats the attributed graph as a set of augmented nodes, and learns a neural net on this set.
Motivated by the general form of a permutation-invariant set function shown in |Zaheer et al.|(2017),
we define our neural set function for GFN as follows.

GFN(X,G) = p< > ¢<XG>)

veEVY

Both ¢(-) and p(-) are parameterized by neural networks. We instantiate this general form of neural
set function analogous to that of GNN variants, such as GCN and GIN, in order to facilitate an easier
comparison between GFN and GNNs. Concretely, we parameterize ¢(-) function with a multi-layer
perceptrons (MLPs), i.e. ¢(x) = o(---o(zTW)---). Noted that a single layer of ¢(-) is similar to
a graph convolution layer H(*+1) = U(AH MW () with adjacency matrix A replaced by identity
matrix I, thus ¢(z) could also be considered as an 1 x 1 convolution. As for the function p(-), we
parameterize it with another MLP (a.k.a. fully connected layers in this case), which is also used for

the readout function in GNNs.

Computation efficiency. GFN provides a way to approximate GNN with less computation over-
heads, especially during the training process. Since the graph augmented features can be pre-computed
before training even starts, the graph structures are not involved in the iterative training process. This
brings the following several advantages. Firstly, since there is no neighbor propagation step in GFN,
it reduces computational complexity. For example, compare a single layer feature transformation
function in GFN, i.e. o(HW), and a neighbor aggregation function in GCN, i.e. c(AHW). Sec-
ondly, since graph augmented features of different scales are readily available from the input layer,
GFN can leverage them much earlier, thus may require less transformation layers. Lastly, it also eases
the implementation related overhead, since the neighbor aggregation operation in graphs typically
implemented by sparse matrix operation.

3  EXPERIMENTS

We conduct experiments on common graph classification benchmarks (Yanardag & Vishwanathan,
2015} | Xinyi & Chen, |2019;|Xu et al., 2019)), which involves two biological and social graphs. We

2We do not leverage node centrality features in this work as those can be expensive to calculate during
inference time.
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Algorithm MUTAG NCI1 PROTEINS D&D ENZYMES  Average
WL 82.05+0.36 82.19+0.18 74.68+0.49 79.78+0.36 52.22+1.26 74.18
AWE 87.87£9.76 - - 71.51£4.02 35.77£5.93 -
DGK 87.44+£2.72 80.31+£0.46 75.68£0.54 73.50£1.01 53.43£0.91 74.07
PSCN 88.95+4.37 76.34£1.68 75.00£2.51 76.27+£2.64

DGCNN 85.83+1.66 74.44£0.47 75.54£0.94 79.37£0.94 51.00£7.29 73.24
CapsGNN  86.67+6.88 78.35£1.55 76.28+3.63 75.38+4.17 54.67+5.67 74.27

GIN 89.40+£5.60 82.70£1.70 76.20£2.80 - - -
GCN 8720 £5.11 83.65+1.69 75.65+324 79.12+£3.07 66.50+£6.91 78.42
GFN 90.84 £7.22 8277+149 7646+4.06 7878 +£3.49 70.17 +5.58 79.80

GFN-light 89.89 +£7.14 8143+£1.65 77.44+3.77 78.62+543 69.50+7.37 79.38

Table 1: Test accuracies (%) for biological graphs. The best results per dataset and in average are
highlighted. - means the results are not available for a particular dataset.

Algorithm COLLAB IMDB-B IMDB-M RE-M5K RE-M12K Average
WL 79.02£1.77 73.40£4.63 49.33£4.75 49.4442.36 38.18+1.30 57.87
AWE 73.93+1.94 74.45+5.83 51.54+3.61 50.46£1.91 39.20£2.09 57.92
DGK 73.09+0.25 66.96£0.56 44.55+0.52 41.27£0.18 32.22+0.10 51.62
PSCN 72.60£2.15 71.00£2.29 45.23£2.84  49.10+0.70 41.32+0.42 55.85

DGCNN 73.76£0.49 70.03£0.86  47.83+0.85 48.70+4.54 - -
CapsGNN  79.64+0.91 73.10£4.83 50.27£2.65 52.88+1.48 46.62+1.90 60.50

GIN 80.20+1.90 75.10+£5.10 52.30+2.80 57.50£1.50 - -
GCN 81.72 £1.64 7330+529 51.20+5.13 56.81+£237 4931144 62.47
GFN 81.50+242 73.00+435 51.80+£5.16 57.59+240 4943+1.36 62.66

GFN-light 81.34+1.73 73.00£4.29 5120£5.71 57.11+146 49.75+1.19 62.48

Table 2: Test accuracies (%) for social graphs. The best results per dataset and in average are
highlighted. - means the results are not available for a particular dataset.

compare to graph kennel based and graph neural network based baselines () and follow the 10-fold
cross-validation setting as in (). We also implement GCN with four graph convolutional layers to
mimic the architecture of GFN as in an “AB testing” setting. GFN-light is GFN with a single feature
transformation layer. The details of datasets, baseline and our model configurations can be found in
the appendix.

Biological and social datasets. Table[T|and[2]show the results of different methods in both biological
and social datasets. It is worth noting that in both datasets, GFN achieves similar performances
with with our GCN, and match or exceed existing state-of-the-art results on multiple datasets. This
suggests that GFN could very well approximate the existing GCNs in these graph benchmark datasets,
and also unnecessity of non-linear graph filtering for these benchmarks.

MNIST pixel graphs. We report the accuracies under different total

receptive field sizes (the number of hops a pixel could condition its com- Table 3: Results on
putation on), as the model benefits from larger receptive fields. Results MNIST graphs.

in Table [3] show that GCN significantly outperforms GFN in all three

receptive filed sizes. This indicates that non-linear graph filtering is nec-
essary for this graph dataset. Noted that our GNN accuracy is not directly
comparable to traditional CNN’s, as our GNN does not distinguish the

Receptive GCN  GFN
size

direction in its parameterization, and a global sum pooling does not dis- 3 9147 87.73
tinguish spatial information. For the context, when we use coordinates 5 95.16 91.83
as features both GCN and GFN could achieve nearly 99% accuracy. 7 96.14  92.68

Training time comparisons. We compare the training time of our GCN

and the proposed GFNs. Figure|l|shows that a significant speedup by

utilizing GFN compared to GCN, especially when there are more edges such as in COLLAB dataset.
Also since our GFN could work with less number of transformation layers, GFN-light achieve better
speedup.
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Figure 1: Training time comparisons. The annotation, e.g. 1.0x, denotes speedup compared to GCN.

Table 4: Accuracies (%) under various augmented features. Averaged results over multiple datasets
are shown here. A1'23X is abbreviated for A X, A2X, A3X, and default node feature X is always
used (if available) but not displayed to reduce clutter. Best results per row/block are highlighted.

Graphs  Model ‘ None

d A'X  AYX AMPX | dA'X d,AVX d AVPRX

Bi GCN | 78.52 | 78.51 7823 7824  78.68 79.10 79.26 79.69

0- GEN | 7627 | 77.84 7878 79.09  79.17 78.71 79.21 79.13
Soical GCN | 3402 | 6235 5920 6039  60.28 62.45 62.71 62.77
oAl GEN | 3045 | 60.79 58.04 59.83 60.09 62.47 62.63 62.60

Table 5: Accuracies (%) under different number of Conv. layers. Flat denotes the collapsed GFN
model into a logistic regression (no non-linear layer is used for the set function).

\ Flat \ 1 2 3 4 5
Bio GCN - 77.17 79.38 78.86 78.75 78.21
’ GFN | 69.54 | 79.59 79.77 79.78 78.99 78.14
Soical

GFN

GCN - 60.69 62.12 6237 62.70 62.46
62.70 62.88 62.81 62.80 62.60

Node features. To better understand the impact of features, we test both models with different
input node features. Table[d]shows that (1) graph features are important for both models, especially
for GFN, and (2) degree of a node itself can provide a very significant improvement, and (3) with
multi-scale features they can achieve the best results. More detailed results (per dataset) can be found
in appendix.

Architecture depth. We test the effectiveness of the multiple feature transformation layers. We also
test the necessity of non-linear set function by constructing GFN-flat, which contains no feature
transform layer, but just the global sum pooling followed by a single fully connected layer (mimicking
logistic regression). Table[5]shows that (1) GCN benefits from multiple GCN layers with a significant
diminishing return, (2) GFN with single feature transformation layer could work pretty well already,
likely due to the availability of multi-scale input node features, which otherwise require multiple
GCN layers to obtain, and (3) by collapsing GFN into a logistic regression model the performance
degenerates significantly. This is in contrast to the finding of [Wu et al.|(2019) in node classification
benchmarks that suggests that logistic regression or a single fully connected layer is enough.

4 DISCUSSIONS

In this work, we propose Graph Feature Network, a simple and lightweight neural set function based
on graph augmented features. GFN well approximates GNNs on graph classification benchmarks with
improved efficiency. Our results seemly suggested GNNs may not have learned more complex neigh-
bor aggregation functions than graph augmented features in GFN for common graph classification
benchmarks. This raises doubts on the necessity of non-linear graph filtering for these benchmarks. It
is possible that GNNs can be improved to learn more sophisticated patterns that require a non-linear
graph filtering. However, it is also likely that tested common benchmark datasets are not sufficiently
differentiating, thus a linear graph filtering is powerful enough. Superior performance of GNNs for
image as graph indicates that graphs constructed from raw visual signals may require more complex
neighbor aggregation.
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A PRELIMINARIES

In this section, we start with a definition of the graph classification problem, and then introduces
related graph neural network variants.

Graph classification problem. Given an attributed graphs G = (V, &, X), where V is a set of
vertexes/nodes, & is a set of edges, X € R™*% are node attributes We can also denote G = (G, X)
that separates the graph structure G and its attributes X. The goal is to predict target class y € ),
where ) is a set of pre-defined categories. Many real world problems can be formulated as graph
classification problems, such as social and biological graph classification Yanardag & Vishwanathan
(2015); [Kipf & Welling| (2016).

Graph neural networks. Graph Neural Networks (GNNs) define functions on the attributed graph
G. Typically, the graph function, GNN(G, X), learns a multiple steps of transformation of the original
attributes/signals for node level or graph level representation. In each of the ¢-th step, a new node
presentation, hl()t) is learned. Initially, h(1) is initialized with the node feature vector, and during each
subsequent step, a neighbor aggregation function is applied to generate the new node representation.
More specifically, common neighbor aggregation functions for the v-th node take the following form.

hH) = f(hgt—U, {hgj—l)u € N(u)}>,

where AV (v) is a set of neighboring nodes of node v. To instantiate this general neighbor aggregation
function, (Kipf & Welling}, 2016) proposes the Graph Convolutional Network (GCN) aggregation

scheme as follows.
o0 a5 awtrei),
wEN (v)

where W(®) e R4 is the learnable transformation weight, a,, is the normalized edge weight
between node v and v, and it is an entry in the normalized adjacency matrix (Kipf & Welling} 2016)).
This transformation can be compactly expressed as H(*t1) = o(AH®OW®)), where H®) ¢ R4
are the hidden states of all nodes at ¢-th step.

More sophisticated neighbor aggregation schemes are also proposed, such as GraphSAGE (Hamilton
et al.}2017) which allows pooling and recurrent aggregation over neighboring nodes. And in most

3We focus on node attributes in this work, but X can be extended into (Xv, Xe) where Xy are node
attributes and X¢ are edge attributes.
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recent Graph Isomorphism Network (GIN) (Xu et al.}2019), a more power aggregation function is
proposed as follows.

A MLP<t><(1+e<t>>h§f1>+ Z hqgn)

u€eN (v)

where MLP abbreviates for multi-layer perceptrons. Furthermore, the message function could be
extended to incorporate edge features (Gilmer et al., 2017).

Finally, in order to generate graph level representation hg, a readout function is used, which generally

takes the following form:
hg = g<{hgT)|v € g})

This can be instantiated by a global sum pooling, i.e. hg = Y ., hS)T), which is commonly followed

by fully connected layers to generate the categorical or numerical output. More sophisticated graph
readout functions are also possible, such as attention based ones |Li et al.|(2015).

B ANALYSIS ON THE CONNECTION BETWEEN GFNS AND GNNS

We now turn to a more formal analysis on the connection between GFNs and GNNs. We generalize
the multi-step neighbor propagation and graph readout function discussed above, and consider a
graph neural network in two parts/stages: (1) the graph filtering stage that produces a finite set of
representations for elements in the graph, and (2) the set function stage that combines signals in the
set for graph level prediction.

Definition 1. (Graph filtering) The graph filtering, Y = Fc(X), performs a transformation of input
signals based on the graph G, that takes a set of signals X € R™*?, and outputs another set of
filtered signals Y € R™*4".

Graph filtering in most existing GNNs consists of multi-step neighbor aggregation operations. For
example, in GCN [Kipf & Welling| (2016)), the multiple steps aggregation can be expressed as
HT = g(A(..c(AXWWD) )W), Tt is also worth noting that given no constraint on 1 and n
in our definition, the graph filtering is allowed to perform a larger set of operations, including graph
poolingDefferrard et al.| (2016).

Definition 2. (Set function) The set function, y = T (Y), takes a set of vector Y € R™% \where
their orders do not matter, and outputs a task specific prediction y € R? B

The graph readout function can be considered as a set function, which enables the graph level
prediction that is permutation invariant w.r.t. nodes in the graplﬂ

Lemma 1. A GNN that performs graph-level transformation, i.e. mapping from G to y, can be
decomposed into a graph filtering followed by a set function, i.e. GNN(X,G) = T ® Fa(X).

A straight-forward proof is to set F(X) = GNN(X, @) (in which case Y € R'*%"), and T be
an identity function. However, despite its correctness, it may not provide any helpful insight. A
more practical approach is to scrutinize existing GNN variants under this point of view. Methods
with flat aggregation such as GCN, GraphSAGE, GIN, they all have multi-step neighbor aggregation
operations which belong to graph filtering, and also a readout function that is a set function. For
methods with hierarchical pooling (such as max pooling), where only a subset of nodes are selected
in each step, we could consider some nodes are masked out during the process.

By decomposing a GNN as graph filtering followed by a set function, one may wonder how to access
the importance of each of these two stages. Do we need a sophisticated graph filtering function for
a particular task or dataset? And if we have a complex set function, is it possible to use a simple
graph filtering function? These questions are difficult to answer directly as the functionality of the
two stages may overlap: if the graph filtering stage has fully processed node and graph features,

“Even Y contains hidden states of more than one type of objects (such as edge states), we could still augment
the hidden states with extra type features such that Y can be treated as a set.
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then a simple set function can be used for prediction. So despite the conceptual separation of graph
filtering and the set function, they are still coupled computationally. To better decouple these two
stages, similar toWu et al.|(2019), we propose to linearize the graph filtering function as follows.

Definition 3. (Linear graph filtering) We say a graph filtering function F(X) is linear w.rt. X if
it is a linear transformation of X € R™*%, and the transformation of graph structure G does not
contain any trainable parameters.

Note that by constraining the learnable parameters in linear graph filtering, they cannot affect the
graph structures for neighbor aggregation. An intuitive understanding of linear graph filtering is to
take an existing graph filtering function and remove the non-linear operations, such as ReLU, and
max pooling. By doing so, the graph filtering becomes linear w.r.t. X, thus could be collapsed into a
flat structure.

Proposition 1. A linear graph filtering function can be written as Fi@" (X)) = wT'(G) X8, where
I'(G) is some transformation of G, X (@) € R+VX(@+1) js an augmentation of X with its row and
column extended and filled with one in the new entries, and 7, 0 are the only learnable parameters.

Proof sketch. According to the definition of linear function w.r.t. X, a graph filtering without
learnable parameters can be written as F(X) = I'(G)X(®). Given that the transformation of G
does not contain any learnable parameters, the parameters for the linear transformation can only be
added on both sides of T'(G) X (@) in order to preserve linearity w.r.t. X, which completes our proof.

It is worth noting that existing GNNs satisfy a desirable permutation invariance condition (w.r.t.
nodes), so to satisfy the same condition, we set 7r to an identity matrix. Since the parameters 6 are
linearly associated, it could be absorbed into the next layer, leaving only graph propagated features,
i.e. T'(G)X, in the linear graph filtering stage. This enables us to disentangle graph filtering and the
set function more thoroughly: the graph filtering part constructs graph augmented features, and the
set function learns to compose them for the graph-level prediction.

Proposition 2. A GNN that is permutation-invariant and has a linear graph filtering stage can be
expressed as GFN with appropriated graph augmented features X €.

Proof sketch. We have shown that a GNN that is permutation-invariant, its linear graph filtering
function can be expressed as I'(G) X “)@. The T (@)X (@) does not involve any learnable parameters,
thus can be treated as graph augmented features X . 8 can be absorbed into the set function of GFN.

This is to say, GNNs, once linearized (e.g. removing non-linearity in graph filtering functions),
collapse into graph augmented features with simple linear transformation parameterized by 8. And
GFN allows a non-linear set function on top of these graph augmented features. For example, a
linearized GCN, its K -th layer can be written as H(%) = AKX (Hlew(k)), and the parameters
K W®) collapse into a flat 0.

Given the above analysis, we establish the connection between GFNs and GNNs. Generally, one
can considered GFNs are equal or less powerful than GNNSs as a linear graph filtering is assumed.
There should exist scenarios where non-linear graph filtering is crucial for aggregating complex
neighborhood information. However, the importance of non-linear graph filtering highly depends
on the tasks or datasets at hand, and GFN can be a computationally efficient alternative when linear
graph filtering is powerful enough. As a side result, GFN can also be used as a tool to poke at the
necessity of a non-linear graph filtering function in a specific task or dataset. And as we will show in
our experiments, the existing graph classification benchmarks do not seem to benefit much from a
complex non-linear graph filtering.

C DETAILS FOR DATASETS, BASELINES AND MODEL CONFIGURATION

Datasets. The main datasets we consider are commonly used graph classification benchmarks (Ya-
nardag & Vishwanathan| [2015} Xinyi & Chen, |2019; Xu et al.| 2019). The graphs in the collection
can be categorized into two categories: (1) biological graphs, including MUTAG, NCI1, PROTEINS,
D&D, ENZYMES; and (2) social graphs, including COLLAB, IMDB-Binary (IMDB-B), IMDB-
Multi (IMDB-M), Reddit-Multi-5K (RE-M5K), Reddit-Multi-12K (RE-M12K). It is worth noting
that social graphs have no node attributes, while biological graphs come with node attributes. The
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detailed statistics can be found in the appendix. In addition to the common graph benchmarks, we
also consider image classification on MNIST where pixels are treated as nodes and nine nearest
neighbors in the grid (including self-loop) are used to construct the graph. Detailed statistics of the
biological and social graph datasets are listed in Table[6]and[7] respectively.

Dataset MUTAG NCI1 PROTEINS D&D ENZYMES
# graphs 188 4110 1113 1178 600

# classes 2 2 2 2 6

# features 7 37 3 82 3

Avg # nodes 17.93 29.87 39.06 284.32 32.63
Avg # edges 19.79 32.30 72.82 715.66 62.14

Table 6: Data statistics of Biological dataset

Dataset COLLAB IMDB-B IMDB-M RE-M5K RE-12K
# graphs 5000 1000 1500 4999 11929
# classes 3 2 3 5 11

# features 1 1 1 1 1
Avg # nodes 74.49 19.77 13.00 508.52 391.41
Avg # edges 2457.78 96.53 65.94 594.87 456.89

Table 7: Data statistics of Social dataset

Baselines. We compare with two families of baselines. The first family of baselines are kernel-based,
namely the Weisfeiler-Lehman subtree kernel (WL) (Shervashidze et al., 2011)), Deep Graph Kernel
(DGK) (Yanardag & Vishwanathan, 2015)) and AWE (Ivanov & Burnaev, 2018)) that incorporate
kernel-based methods with with learning-based approach to learn embeddings. The second family of
baselines are graph neural network-based models, which include recently proposed PATCHY-SAN
(PSCN) (Niepert et al.,|2016), Deep Graph CNN (DGCNN) (Zhang et al.,2018)), CapsGNN (Xiny1 &
Chen, [2019) and GIN (Xu et al., 2019).

For the above baselines, we use their accuracies reported in the original papers, following the same
evaluation setting as in (Xu et al.,|2019). Different implementation details can make a difference,
so to ensure a “A/B testing” between GFN and GNN, we also implement Graph Convolutional
Networks (GCN) from (Kipt & Welling|, [2016). More specifically, our GCN model contains a
dense feature transformation layer, i.e. H 2 = o(X W(l)), followed by three GCN layers, i.e.
HOD = o(AHOW®)P| To enable graph level prediction, we add a global sum pooling, followed
by two fully-connected layers that produce categorical probability over pre-defined categories.

Model configurations. For the proposed GFN, we mirror our GCN’s to mimic an “A/B testing”.
Therefore, we use the same architecture, parameterization and training setup, but replace the GCN
layer with feature transformation layer, thus total of four feature transformation layers. Converting
GCN layer to feature transformation layer is equivalent to setting A = I in in GCN layers. We also
construct a faster GFN, namely GFN-light, that contains only a single feature transformation layer,
which can further reduce the training time while maintaining similar performance.

For both our GCN and GFN, we utilize ReLU activation and batch normalization loffe & Szegedy
(2015)), and fix the hidden dimensionality to 128. No regularization is applied. Furthermore we use
batch size of 128, and a fixed learning rate of 0.001 with Adam optimizer [Kingma & Ba|(2014). To
compare with existing work, we follow (Xinyi & Chen,|2019; Xu et al.,|2019) and perform 10-fold
cross validation. We report the average and standard deviation of validation accuracies across the 10
folds within the cross-validation. We run the model for 100 epochs, and select the the best epoch in
the same way as Xu et al.|(2019), i.e., a single epoch with the best cross-validation accuracy averaged
over the 10 folds is selected.

>The number of GCN layers is selected according on its performance on both graph and biological datasets.
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In terms of input node features to the proposed GFN, by default, we use both degree and multi-scale
propagated features (up to K = 3), that is {d, X, A' X, A2X, A3X}. We discretize degree features
into one-hot vector, as suggested in|Fey & Lenssen|(2019). As for our GCN, we also augment its
node attributes with extra node degree attribute (to counter that the normalized adjacency matrix may
not maintain the degree features).

Furthermore, for MNIST, we train and evaluate on given train/test split. Additionally, since MNIST
benefits more from deeper GCN layers, we parameterize our GCN model using a residual network (He
et al.,[2016)) with multiple GCN blocks, the number of blocks, and graph augmented features, are
varied according to the size of total receptive filed. All experiments are run on Nvidia GTX 1080 Ti
GPU.

D DETAILED PERFORMANCES WITH DIFFERENT FEATURES

Table 8: Accuracies (%) under various augmented features. A'3X is abbreviated for
A'X, A2X, A3X, and default node feature X is always used (if available) but not displayed to
reduce clutter.

Dataset Model | None | d A'X  AVX AMPX | dA'X dAYPX d AVPX
MUTAG  GCN [ 8348 | 8700 8335 8343 8556 | 8718 8162 88.73
GFN | 8221 | 8931 8759 87.17 8662 | 8942 8928 88.26
N GCN | 80.15 | 8324 8262 8311 8260 | 8338  83.63 83.50
GFN | 7083 | 7550 8095 8280 8350 | 8192 824l 82.84
GCN | 7449 | 7628 7448 17547 7654 | 77109 7691 7745
PROTEINS  GeN | 7493 | 7663 7601 7574 7664 | 7637 7646 77.09
D GCN | 7929 | 7878 17870 7167  78.18 | 7835  78.79 79.12
GFEN | 7870 | 7777 7785 7743 7828 | 7134 7692 78.11
GCN | 7517 | 6717 7200 7150 7050 | 6950 6933 69.67
ENZYMES  GeN o | 7467 | 7000 7150 7233 7083 | 6850  71.00 69.33
coLiap  GCN [ 3969 | 8214 7662 7698 7722 | 8214 8224 82.20
GFN | 3157 | 8036 7640 7708 7704 | 8128 8162 81.26
MDE.E  GCN [ 5100 | 7300 7030 7110 7220 | 7350 7380 73.70
GFN | 5000 | 7330 7230 7130 7170 | 7440 7320 73.90
MDEM  GCN [ 3500 | 5033 4553 4633 4573 | 5020 5073 51.00
GFN | 3333 | 5120 4680 4667 4647 | 5193 5193 51.73
REask  GCN [ 2848|5699 5497 5743 5655 | 5667 5675 57.01
GFN | 2000 | 5423 5111 5585 5635 | 5645 570l 56.71
REaiox  GCN [ 1593|4928 4858 5001 4971 | 4973 5003 49.92
GEN | 1733 | 4486 4361 4825 4887 | 4831 4937 4939

Table 8 show the performances under different graph features for GNNs and GFNGs. It is evident that
both model benefit significantly from graph features, especially GFNs.

E DETAILED PERFORMANCES WITH DIFFERENT ARCHITECTURE DEPTHS

Table 0] shows performance per datasets under different number of layers.

F DETAILED VISUALIZATIONS

Figure 2] [3| ] and ] show the random and mis-classified samples for MUTAG, PROTEINS, IMDB-B,
and IMDB-M, respectively. In general, it is difficult to find the patterns of each class by visually
examining the graphs. And the mis-classified patterns are not visually distinguishable, except for
IMDB-B/IMDB-M datasets where there are some graphs seem ambiguous.
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Table 9: Accuracies (%) under different number of Conv. layers. Flat denotes the collapsed GFN
model into a logistic regression (no non-linear layer is used for the set function).

Dataset Method ‘ Flat ‘ 1 2 3 4 5
GCN ~ 8832 9089 87.65 8831 87.68
MUTAG  GEN | 8285 | 90.34 8939 88.18 87.59 S87.18
NIl GCN ~ [ 7562 8141 8304 8294 8331
GFN | 68.61 | 8177 8309 8285 8280 83.09
GCN C 17691 7699 77.00 7619 7529
PROTEINS  GeN | 7565 | 7771 7709 7717 7628 75.92
oD GCN C | 7734 7793 7895 7946 7877
GFN | 7675 | 78.44 7878 79.04 7845 17632
GCN T | 6767 6967 67.67 6683 6600
ENZYMES e | 4383 | 69.67 7050 7167 69.83 68.17
GCN ~ [ 8036 8186 8140 8190 81.78
COLLAB  GpN | 7572 | 8124 8204 8136 8218 8172
vops | GCN ~ [ 7260 7230 7330 7380 7340
GEN | 73.10 | 7350 7330 7400 7390 73.60
GCN ~ [ 5153 5107 5087 5153 50.60
IMDB-M  GEN | 5040 | 5173 5213 5193 5187 51.40
GCN ~ [ 5405 5649 5683 5673 56.89
REMSK  GEN | 5297 | 5745 57.13 5721 5661 57.03
GCN © | 4491 4887 4945 4952 496l
REMI2K  GEN | 3084 | 4058 4982 4954 4944 4927
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(a) Random samples. (b) Mis-classified samples by GFN.

LTINS A YT
T B E R T b G

(c) Random samples. (d) Mis-classified samples by GCN.

Figure 2: Random and mis-classified samples from MUTAG. Each row represents a (true) class.
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(a) Random samples (b) Mis-classified samples by GFN.
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(c) Random samples. (d) Mis-classified samples by GCN.

Figure 3: Random and mis-classified samples from PROTEINS. Each row represents a (true) class.

(c) Random samples. (d) Mis-classified samples by GCN.

Figure 4: Random and mis-classified samples from IMDB-B. Each row represents a (true) class.
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(c) Random samples. (d) Mis-classified samples by GCN.

Figure 5: Random and mis-classified samples from IMDB-M. Each row represents a (true) class.
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