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ABSTRACT

Does attention matter and, if so, when? While attention mechanism in Graph At-
tention Networks (GATs) was partially motivated to deal with unseen data, our
empirical study on both inductive and transductive learning suggests that datasets
have a much stronger influence. Independent of learning setting, attentions de-
generate to simple averaging for all three citation networks, whereas they behave
strikingly different in the protein-protein interaction dataset: nodes attend to dif-
ferent neighbors per head, and get more focused in deeper layers. Consequently,
attention distributions become telltale features of the datasets themselves.

1 INTRODUCTION

The modeling of graphs has become an active research topic in deep learning (Bronstein et al., 2017).
Dozens of neural network models have been developed recently (Scarselli et al., 2009; Bruna et al.,
2014; Henaff et al., 2015; Duvenaud et al., 2015; Niepert et al., 2016; Defferrard et al., 2016), now
collectively referred to as graph neural networks (GNNs). Many of them have achieved state-of-the-
art performance on tasks like node classification (Kipf & Welling, 2017; Hamilton et al., 2017), link
prediction (Zhang & Chen, 2018) and graph classification (Xu et al., 2019).

Recently, Veličković et al. (2018) proposed the graph attention networks (GATs) which integrate
multi-head self-attention into node feature update. Several extensions and improvements have been
developed since then (Thekumparampil et al., 2018; Zhang et al., 2018; Monti et al., 2018; Svoboda
et al., 2019; Trivedi et al., 2019). While these attention-based GNNs have achieved the state-of-the-
art results, a thorough understanding of graph attention is yet to be achieved.

In this paper, we develop a paradigm for a systematic study of the attentions in GNNs. With ex-
tensive experiments, our findings suggest that the attentions learned by GATs are highly dataset-
dependent. The attention distributions across heads and layers are near uniform for all citation
networks (Cora, Citeseer and Pubmed) while they get more concentrated over layers on the protein-
protein interaction dataset, with different heads have learned significantly different attentions. Fur-
thermore, we perform a meta graph classification experiment to distinguish graphs with attention
based features. A high test accuracy is achieved with interesting visualization results.

2 BACKGROUND

Let G be an undirected graph with node set V , where each node i ∈ V has a feature h0i ∈ Rn0 . In a
wide class of GNNs (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018), the basic
feature update function for node i ∈ V at the l + 1-th layer takes the form of

hl+1
i = σ(

∑
j∈N (i)

αl+1
i,j W

l+1hlj), (1)

∗Work done at New York University Shanghai
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where σ is an activation function, N (i) is a set containing i and its neighbors, αl+1
i,j ∈ R is the

attention weight of node j in updating the feature of node i, W l+1 ∈ Rnl+1×nl is the projection
matrix, and hli, h

l+1
i are correspondingly node features after the l-th and the l + 1-th layer.

Graph Convolutional Networks (GCN) (Kipf & Welling, 2017) and the mean variant of Graph-
SAGE (Hamilton et al., 2017) uses static attention weights given by 1√

|N (i)|
1√
|N (j)|

and 1
|N (i)| .

GAT (Veličković et al., 2018) uses a parameterized subnetwork to output the attention weightsαi,j’s.
Rather than using a single attention head as in Eqn. 1, GAT aggregates the outputs of multiple heads:

αl+1,k
i,j = γk(h

l
i, h

l
j , {hlm | m ∈ N (i)}), hl+1

i = σ

 Kn

k=1

 ∑
j∈N (i)

αl+1,k
i,j W l+1,khlj

 , (2)

where γk is the subnetwork that outputs the attention weights of the k-th head, αl+1,k
i,j and W l+1,k

are the attention weights and projection matrix of the k-th head, and ‘
f
’ means joint concatenation.

Tasks and Datasets We consider the node classification task with two settings: transductive
learning and inductive learning. In the transductive learning setting, the model can access the
features of all nodes in the graph. However, only a fraction of the nodes are labeled and the model is
asked to predict the missing labels. In the inductive learning setting, we have two mutually exclusive
sets of nodes separately for training and test. The model is trained only on the features and labels of
the training set and is asked to predict the labels of the nodes in the test set. As in Veličković et al.
(2018), we consider the following four datasets – citation networks Cora, Citeseer (Sen et al., 2008),
Pubmed (Namata et al., 2012) and protein-protein interaction dataset (PPI) (Zitnik & Leskovec,
2017).

3 METHODOLOGY

The introduction of multi-head attention into multi-layer GNNs poses four questions. Q1: In the
GAT model, all nodes have different attention distributions on their incoming edges. How should
we characterize the overall statistics of these learned attention distributions? Q2: For a single node,
multiple attention distributions are calculated by different architectural components such as heads
and layers. How do these attention distributions differ across different heads and layers? Q3: How
does the choice of the dataset and the learning setting affect the learned attentions? Q4: Is the
statistics of the learned attention related to the intrinsic properties of the graph?

To answer Q1, we propose multiple metrics to characterize the overall statistics of a collection of
attention distributions. To alleviate the impact of randomness in the training phase, we train GAT
with multiple seeds and calculate the metrics using all the learned attentions. We also visualize some
metrics to intuitively understand the attentions learned by GAT. For Q2, to investigate the layer-wise
differences, we examine the characteristics of the attentions generated by different layers using the
aforementioned method; to investigate the head-wise variance, we define a metric that is based on
the statistical distance of two distributions. To answer Q3, we run experiments to see how varying
the dataset and the learning setting impacts the learned attentions. Previous works (Kipf & Welling,
2017; Hamilton et al., 2017; Veličković et al., 2018) only perform transductive learning on the
citation networks and inductive learning on PPI. To fill in the gap, we perform transductive learning
on PPI and inductive learning on the citation networks, of which the data processing strategy is
explained in the appendix A.1. We show that the learning task has little impact on the overall metric
statistics. To answer Q4, we propose a new task called Meta Graph Classification which asks the
model to distinguish the type of the graphs by the characteristics of the attention distributions.

4 EXPERIMENTS

All experiments are performed based on the code released by Veličković et al. (2018). For transduc-
tive learning on citation networks and inductive learning on PPI, we use the best hyperparameters
reported. For the rest two experiments, a hyperparameter search is performed on the validation set.
Unless mentioned otherwise, the results are based on 100 random runs for transductive learning on
citation networks and 10 random runs for rest combinations of dataset and learning setting.
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Figure 1: Entropy histogram plots for attention and datasets variants. For the GAT cases, we plot
the attentions by the first head of the first layer in trained models. The results are merged across
multiple runs. The PPI results are based on training with about 79% nodes.

The main findings of our experiments are the following. First, the deciding factor for the attention
is the dataset itself. The statistics of it in PPI differs significantly from that of the citation networks.
The attention distributions in all citation networks are near uniform, regardless of the heads and
layers. For PPI, the distributions get sharper with deeper layers. Furthermore, different heads of a
layer sharply attend to different neighbors. Lastly, the meta graph classification experiment suggests
that our proposed metrics are potentially telltale features of the nature of the graphs.

Impact of Datasets To investigate the impact of the dataset on attentions, we first run transductive
learning experiments on all datasets and examine the learned attentions. For PPI, the micro F1 score
are separately 0.544 ± 0.022 and 0.904 ± 0.005 for training with about 5% and 79% of the nodes.
The analysis of attentions is given in the following paragraphs.

Overall Results We refer to the simple averaging in the mean variant of GraphSAGE as mean
attention and the symmetric normalization weights in GCN as GCN attention. They are determined
solely by the graph topology, whereas the GAT attentions combine both topology and node features.
For a node i ∈ V , the dispersion of its attentions over its incoming edges can be measured by en-
tropy, i.e., H({αi,j | j ∈ N (i)}) = −

∑
j∈N (i) αi,j logαi,j . To understand the general attention

dispersion over the graph(s), we use the histogram plot of attention entropies for all nodes. Figure 1
shows the entropy histogram plots for mean attentions, GCN attentions, and the learned GAT atten-
tions on all four datasets. For GCN attentions, we first perform a normalization αi,j∑

j∈N(i) αi,j
so that

the attentions sum up to 1. For PPI, we merge the results from all 24 graphs. One can observe that
the histogram plots of learned attentions in all citation networks are similar to those in the mean at-
tention case and differ slightly from those in the GCN attention case. This suggests that by and large
the attention weights are roughly the same for different neighbors. However, the attentions learned
for PPI appear significantly different. Analogously, we examine the dispersion of Jacobian-based
saliency values (Papernot et al., 2016), see appendix A.2.

Layer-wise Statistics We examine the layer-wise differences of attentions with several metrics:
maximum pairwise difference, maximum attention value within the neighborhood set N (i), and
attention on self loop. We average the metrics over all nodes and heads for a layer in each run.
Then, we compute the mean and standard deviation of the averaged metrics in all runs. The results
for Cora and PPI with 79% nodes for training are visualized in figure 3. A table view of the results
(including the ones for the rest experiments) can be found in appendix A.3. The metrics in the PPI
case suggest that attentions get more concentrated and have a sharper focus over their neighborhood
with deeper layers while they change little in the cases of citation networks. At first, we suspect that
such focus might be pointing to the node itself. This turns out not to be the case: the attentions on self
loops on average change little across layers despite the increasingly concentrated attentions. These
observations hold for both dataset split (training with 5% and 79% of the nodes), with the attention
concentration being much more extreme when significantly more nodes are used for training.

3



Published at the Representation Learning on Graphs and Manifolds workshop at ICLR 2019

Figure 2: The nodes are colored based on la-
bels and the edges are colored based on attention
magnitude. The magnitude of attentions can be
referenced with the colorbars.

Figure 3: Bar charts of layer-wise differences
for transductive learning on Cora and PPI.

Figure 4: t-SNE visualization of attention
based features. From left to right, the fea-
tures are separately from all layers, the first
layer, the second layer and the final layer.

Head-wise Statistics For one random run, figure 2 visualizes the attentions of a node over its
neighbors in Cora and PPI, based on three heads in the last layer. We can find that different heads
behave distinctively in PPI case and they are all uniform in Cora case. We further propose metrics
to quantify the head-wise differences. We compute first the mean attention distributions for all heads
within the same layer. The head-wise variance is then determined by the averaged L1 norm of the
difference between the mean distributions and the distributions for each head. The L1 norm of the
difference between two distributions is also known as total variation.

αmean
i,j =

1

K

K∑
k=1

αki,j , j ∈ N (i), Head-wise Variance =
1

2K

1

|V|

K∑
k=1

∑
i∈V

∑
j∈N (i)

|αki,j−αmean
i,j | (3)

We record the head-wise variance from multiple random runs for all datasets in appendix A.4.1. For
citation networks, the head-wise variance is small as all attention distributions are close to uniform
distributions. For PPI, we observe significant head-wise variance which generally gets larger for
deeper layers, suggesting that different heads attend to different part of the neighbors. In addition,
the head-wise variance measured is more significant when more nodes are used for training.

Impact of Learning Tasks There are two factors that potentially affect the learned attentions:
dataset and learning setting. The previous results suggest that the choice of dataset plays a key
role. Nevertheless, we need to verify whether the choice of task induces a difference. Therefore, we
further examine the attentions learned with the inductive learning setting on all datasets. For induc-
tive learning on citation networks, the test accuracy for Cora, Citeseer and Pubmed are separately
88.32 ± 0.31%, 83.38 ± 0.22% and 87.60 ± 0.28%. The layer-wise and head-wise differences are
separately recorded in appendix A.3.2 and appendix A.4.2. The statistics in the inductive learning
setting have minor differences with those in the transductive learning setting. The general observa-
tion still holds: the attentions learned on PPI are much more sharper with high head-wise variance.

Meta Graph Classification Previous experiments demonstrate that the attentions learned are
highly graph-dependent and their characteristics can be predicted with proper knowledge of graphs.
A follow-up question is whether we can do the inverse problem, i.e., infer the graph types based on
the attentions learned. Inspired by this idea, we perform graph classification with attention based
features. For each dataset, we sample 120 subgraphs as in the case of inductive learning on citation
networks and separately train a 3-layer GAT on them to classify the nodes for inductive learning.
The mean and standard deviation of layer-wise attention metrics for all 3 layers from 10 runs are
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then used as graph features. We train a logistic regression classifier using 20% of training graphs
with features standarized. The test accuracy with 10 random train, test splits is 97.4 ± 1.7%. If we
use only metrics from the first, second or third layer, the test accuracy is separately 95.8 ± 2.9%,
76.2±3.1% and 70.9±4.0%. Figure 4 shows t-SNE (van der Maaten & Hinton, 2008) visualization
of the attention metrics separately for all layers, the first layer, the second layer, and the final layer.
We can find that the features for citation networks are close to each other and get more indistinguish-
able with deeper layers. On the other hand, the features of PPI are far from those of the citation
networks across all layers.
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A APPENDIX

A.1 VARYING LEARNING SETTINGS

Transductive Learning on PPI To perform transductive learning on PPI, we sample two mutually
exclusive subsets of the nodes as the training set and validation set for each graph, leaving the rest
as the test set. We experiment on two splitting settings. In the first setting, we sample about 5%
nodes for training and 18% nodes for validation, similar to the splitting ratio of the transductive
learning setting on Cora. In the second setting, we sample 79% nodes for training and 11% nodes
for validation, similar to the case of inductive learning on PPI.

Inductive Learning on Citation Networks To perform inductive learning on citation networks,
we first sample 120 graphs of 100 nodes for each dataset. We use a random walk based sampling
algorithm described in Algorithm 1, which by the study of Leskovec & Faloutsos (2006) performs
best in preserving the properties of static graphs. Separately, 60%, 20%, 20% of the graphs are used
for training, validation and test.

A.2 JACOBIAN-BASED SALIENCY VALUES

The Jacobian-based saliency values of node i with respect to its neighbor j is defined as sl+1,k
i,j =∣∣∣∣∣∣∂hl+1,k

i

∂hl
j

∣∣∣∣∣∣
F

, and may be interpreted as the “contribution” of node j in updating the feature of node

i. We normalize these values by
∑
j∈N (i) s

l+1,k
i,j to compute the entropy.

Below we compare the entropy histogram plots of attention and saliency values in a same run for
Cora and PPI. For this comparison, we use the setting of Veličković et al. (2018). The histogram
plots of the entropy values for saliency look quite similar to those for attentions in the case of citation
networks. Meanwhile, differences are observed for the case of PPI.

A.2.1 CORA

Figure 5 and 6 look basically the same as that of the mean attention. This is also the case for Citeseer
and Pubmed.
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Algorithm 1 Random Walk Sampling
Require: G = (V, E) the original graph, g size = 100 the target subgraph size

1: step = 0
2: start ∼ Unif(V) . Uniformly choose a starting node.
3: Vsub = {start}, Esub = {(start, start)}
4: src = start
5: while |Vsub| < g size and step < 100 ∗ g size do
6: step = step+ 1
7: back ∼ Bernoulli(0.15), . Return to the starting point with probability 0.15.
8: if back then
9: src = start

10: else
11: dst ∼ Unif({j|(src, j) ∈ E})
12: Vsub = Vsub

⋃
{dst}

13: Esub = Esub
⋃
{(dst, dst), (src, dst), (dst, src)}

14: src = dst
15: Return (Vsub, Esub)

Figure 5: Entropy histogram plot of attentions for all heads in a trained GAT.

A.2.2 PPI

Figure 7 and 8 compare the entropy histogram plot of attentions and saliency values for one graph in
PPI. Different from the cases of citation networks, we do have observed clear differences between
the two cases.

A.3 LAYER-WISE DIFFERENCES

A.3.1 TRANSDUCTIVE LEARNING

Table 1, 2, 3, 4, and 5 separately summarizes the layerwise-metrics for transductive learning on
Cora, Citeseer, Pubmed and PPI (with two settings).
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Figure 6: Entropy histogram plot of saliency values for all heads in a trained GAT.

Figure 7: Entropy histogram plot of attentions for all heads in a trained GAT.

Figure 8: Entropy histogram plot of saliency values for all heads in a trained GAT.

Table 1: Layer-wise differences for transductive learning on Cora

Metrics Layer1 Layer2

Max pairwise difference 0.006± 0.001 0.007± 0.006
Max attention 0.279± 0.000 0.279± 0.003
Attention on self loop 0.275± 0.000 0.275± 0.000

A.3.2 INDUCTIVE LEARNING

Table 6, 7, 8, and 9 separately summarizes the layer-wise metrics for inductive learning on Cora,
Citeseer, Pubmed and PPI.
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Table 2: Layer-wise differences for transductive learning on Citeseer

Metrics Layer1 Layer2

Max pairwise difference 0.001± 0.000 0.009± 0.005
Max attention 0.360± 0.000 0.364± 0.002
Attention on self loop 0.359± 0.000 0.360± 0.000

Table 3: Layer-wise differences for transductive learning on Pubmed

Metrics Layer1 Layer2

Max pairwise difference 0.013± 0.003 0.052± 0.005
Max attention 0.347± 0.002 0.367± 0.003
Attention on self loop 0.340± 0.000 0.342± 0.000

Table 4: Layer-wise differences for transductive learning on PPI with about 5% nodes for training

Metrics Layer1 Layer2 Layer3

Max pairwise difference 0.286± 0.111 0.648± 0.136 0.730± 0.083
Max attention 0.330± 0.105 0.665± 0.128 0.741± 0.081
Attention on self loop 0.115± 0.003 0.167± 0.014 0.155± 0.039

Table 5: Layer-wise differences for transductive learning on PPI with about 79% nodes for training

Metrics Layer1 Layer2 Layer3

Max pairwise difference 0.435± 0.052 0.753± 0.049 0.895± 0.019
Max attention 0.471± 0.049 0.764± 0.049 0.905± 0.019
Attention on self loop 0.109± 0.003 0.172± 0.013 0.173± 0.013

Table 6: Layer-wise differences for inductive learning on Cora

Metrics Layer1 Layer2 Layer3

Max pairwise difference 0.067± 0.023 0.027± 0.009 0.020± 0.004
Max attention 0.381± 0.012 0.360± 0.005 0.356± 0.002
Attention on self loop 0.348± 0.003 0.342± 0.002 0.344± 0.000

Table 7: Layer-wise differences for inductive learning on Citeseer

Metrics Layer1 Layer2 Layer3

Max pairwise difference 0.111± 0.041 0.030± 0.010 0.024± 0.004
Max attention 0.403± 0.023 0.359± 0.006 0.355± 0.002
Attention on self loop 0.347± 0.004 0.339± 0.002 0.341± 0.000

A.4 HEAD-WISE DIFFERENCES

A.4.1 TRANSDUCTIVE LEARNING

Table 10 summarizes the head-wise variances across datasets for transductive learning.
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Table 8: Layer-wise differences for inductive learning on Pubmed

Metrics Layer1 Layer2 Layer3

Max pairwise difference 0.007± 0.002 0.004± 0.002 0.008± 0.003
Max attention 0.369± 0.001 0.367± 0.001 0.369± 0.001
Attention on self loop 0.365± 0.000 0.365± 0.000 0.365± 0.000

Table 9: Layer-wise differences for inductive learning on PPI

Metrics Layer1 Layer2 Layer3

Max pairwise difference 0.458± 0.042 0.782± 0.039 0.917± 0.015
Max attention 0.493± 0.041 0.791± 0.038 0.927± 0.016
Attention on self loop 0.109± 0.005 0.192± 0.009 0.180± 0.018

Table 10: Head-wise variance for transductive learning

Dataset Layer1 Layer2 Layer3

Cora 0.004± 0.001 0.000± 0.000 Not applicable
Citeseer 0.001± 0.000 0.000± 0.000 Not applicable
Pubmed 0.007± 0.002 0.031± 0.007 Not applicable
PPI-setting1 (about 5% nodes for training) 0.297± 0.088 0.463± 0.089 0.438± 0.073
PPI-setting2 (about 79% nodes for training) 0.436± 0.028 0.559± 0.037 0.649± 0.021

Table 11: Head-wise variance for inductive learning

Dataset Layer1 Layer2 Layer3

Cora 0.038± 0.010 0.014± 0.004 0.005± 0.001
Citeseer 0.060± 0.020 0.016± 0.006 0.005± 0.001
Pubmed 0.003± 0.001 0.002± 0.001 0.004± 0.002
PPI 0.450± 0.019 0.539± 0.032 0.647± 0.027

A.4.2 INDUCTIVE LEARNING

Table 11 summarizes the head-wise variances across datasets for inductive learning.
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