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ABSTRACT

Graph-structured data analysis is an increasingly popular topic with applications
in many fields. Despite rich existing works in Graph Kernels and Graph Neural
Networks, most of these approaches only consider the connectivity structure and
discrete node attributes, while ignoring the graphs with continuous node and edge
attributes. In this paper, we propose a scalable algorithm for graph embeddings,
which encode both the node attribute and edge attribute information. We develop
a unifying embedding framework for node-attributed and edge-attributed graphs,
by the virtue of the adjoint graph. Extensive graph classification experiments
demonstrate the superior performance of our graph embeddings.

1 INTRODUCTION

Graph-structured data analysis has been widely used in many application domains such as com-
putational biology, drug discovery, and social network analysis. Recent years have seen a surge of
interests in graph representation learning. Graph kernels are one of the most effective methods learn-
ing graph feature map and measuring the similarity between graphs. While highly scalable graph
kernels have been developed for graphs with thousands of nodes (Shervashidze et al., 2009), most
of existing graph kernels are designed for unlabeled graphs or graphs with discrete node attributes
(node labels) (Shervashidze et al., 2011). However, graphs appeared in real-world applications often
come with continuous-valued measurements or properties attached to both nodes and edges. There-
fore, a natural and open challenge is that how to develop scalable kernels and embeddings on graphs,
both nodes and edges of which have discrete and continuous attributes?

Inspired by the recently proposed generic distance to kernel learning framework (Wu et al., 2018),
we present a new approach to construct a positive-definite graph kernel via an infinite-dimensional
feature map given by the energy distance between node embedding sets of graphs. Based on this
kernel, we can then derive our graph embedding via a randomized kernel approximation. The linear
inner products of these embeddings approximate the exact kernels. This particular randomized
approximation allows us to easily obtain a scalable attributed graph embedding (SAGE) as well
as to efficiently compute the graph kernels. In this paper, we present Scalable Attributed Graph
Embeddings (SAGE) for graphs with any type of node attributes and edge attributes. SAGE is able
to encode both the topological connectivity and attributes information of graphs. We develop an
unifying embedding framework for node-attributed and edge-attributed graphs, by the virtue of the
adjoint graph. The computation of this novel graph embedding scales linearly with both the number
of graphs and the embedding size.
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Related work. A popular line of research focuses on developing graph kernels, without obtain-
ing explicit graph representations. Most existing ones are based on the R-convolution framework
(Haussler, 1999), whose key idea is decomposing a whole graph into substructures, such as subtrees
(Shervashidze et al., 2011), graphlets (Shervashidze et al., 2009), and shortest paths (Borgwardt &
Kriegel, 2005), and then quantitatively measuring the similarities among them. All the kernels are
designed for graphs without or with only discrete attributes. Recently, the subgraph matching ker-
nels (Kriege & Mutzel, 2012) and the graph invariant kernels (Orsini et al., 2015) were proposed for
handling continuous node attributes. More recently, graph kernels that are based on either geometric
node embeddings, such as (Johansson et al., 2014), (Johansson & Dubhashi, 2015), and (Nikolent-
zos et al., 2017), or the return probability feature embeddings (Zhang et al., 2018) were proposed.
However, all the above work consider only the node attributes while ignoring the edge attributes. In
our paper, we develop a framework for graph kernel design and embedding, which can be applied to
graphs with both node and edge attributes.

Our contributions. We highlight our contributions as follows: (i.) We propose a unifying graph
embedding framework, which, to the best of our knowledge, is the first one that considers both the
node and edge attributes. (ii.) We introduce a novel strategy of converting edge-attributed graphs to
node-attributed graphs, opening a door to involving edge attributes information for many other graph
kernels. (iii.) We mathematically and empirically show that our proposed graph embedding SAGE
exhibits linear complexity in the number of graphs and the size of embeddings. (iv.) We conduct
extensive experiments on 25 graph benchmark datasets and demonstrate the superior performance of
our approach in terms of both the classification accuracy and computational time compared against
13 state-of-the-art graph kernel based and graph neural network (GNNs) based baselines.

2 GRAPH NODE EMBEDDINGS AND DISSIMILARITY MEASURE

We consider the attributed graph G = {V, E ,AN ,AE} of n nodes and m edges, where V =
{v1, v2, ..., vn} is the set of nodes, E is the set of edges, and AN and AE are respectively the
node attributes and edge attributes set.

Graph node embeddings. We employ the return probability features (RPF) (Zhang et al., 2018)
as the Euclidean space embedding of nodes, because they can well capture the topology of graphs
and are invariant to graph isomorphisms. As in (Zhang et al., 2018), given each node vi ∈ G,
we represent it with a vector ~pi, defined as ~pi =

[
P 1

G(i, i),P
2
G(i, i), ...,P

S
G(i, i)

]T
, where P 1

G =

D−1G AG is the transition probability matrix of the random walk on G, and P s
G(i, i), s = 1, 2, ..., S

is the s−step return probability of random walks starting from vi. Integrating RPF and the node
attributes {~ai}ni=1 ⊆ AN , we can represent the graph with the set

S(G) = {(~pi, ~ai)}ni=1 ⊆ RS ×AN . (1)

Graph dissimilarity measure. We use the energy distance (Székely, 2003) as the dissimilarity
measurement of set representations. Let S1 = {x1, x2, ..., xn1

} and S2 = {y1, y2, ..., yn2
} be

two sets in X . Let d be a metric (here called the “ground distance”) on X . The energy distance,
DE , between S1 and S2 is defined as D2

E(S1, S2) = 2A − B − C, where A, B, and C equal to
1

n1n2

∑n1

i=1

∑n2

j=1 d(xi, yj),
1
n2
1

∑n1

i=1

∑n1

j=1 d(xi, xj), and 1
n2
2

∑n2

i=1

∑n2

j=1 d(yi, yj), respectively.

Constructing the ground distance d. Now we construct the ground distance d such that it can
well encode the difference of both the structure and node attributes information. Without loss of
generality, we assume that the graphs have both discrete and continuous attributes, i.e., S(G) =

{(~pi, ~a
(d)
i , ~a

(c)
i )}ni=1,where ~a(c)

i is the continuous attribute vector, and ~a(d)
i is the one-hot vector

that represents the discrete attribute. We provide a novel ground distance by leveraging the power of
tensors. That is, we represent each node vi as a rank-one tensor, i.e., xi = ~pi⊗~a(d)

i ⊗~a
(c)
i . Applying

the fact that 〈~u1 ⊗ ~v1 ⊗ ~w1, ~u2 ⊗ ~v2 ⊗ ~w2〉T = 〈~u1, ~u2〉 · 〈~v1, ~v2〉 · 〈 ~w1, ~w2〉, we can obtain d
by computing the distance between two rank-one tensors x and y, i.e., d2(x, y) = ‖x − y‖2T =
〈x, x〉T + 〈y, y〉T − 2〈x, y〉T .
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3 SCALABLE ATTRIBUTED GRAPH EMBEDDINGS

We extend the recently proposed distance to kernel learning framework “D2KE” (Wu et al., 2018)
to graphs, constructing the graph kernel and scalable graph embeddings. Let G be the space of all
graphs. We define the function k on G × G,

k(Gx, Gy) =

∫
G
p(Gω)φGω

(Gx)φGω
(Gy)dGω, (2)

where φGω
(G) = exp(−γDE(G,Gω)) and Gω is a random graph, and p(Gω) is a probability

distribution over all random graphs in G. As shown in (Wu et al., 2018), we have k(Gx, Gy) →
exp(−γDE(Gx, Gy)) as γ → ∞, which implies that k is a similarity measurement. Moreover, it
can be checked that k is positive definite. Consequently, k is a graph kernel.

Node-attributed graph embeddings. The exact computation of k is intractable, since the inte-
gral over G has no analytic solutions. Inspired by randomized kernel approximation introduced in
(Rahimi & Recht, 2008), we approximate the graph kernel k by using a finite number of random
graphs. Let Gωi

, i = 1, 2, ..., R be random graphs sampled from a probability distribution p on G.
We consider the Euclidean space embedding, ~ZN (G), for node-attributed graph G, i.e.,

~ZN (G) =
1√
R

[
φGω1

(G), φGω2
(G), ..., φGωR

(G)
]T ∈ RR. (3)

Then, as R → ∞, we have 〈 ~ZN (Gx), ~Z
N (Gy)〉 = 1

R

∑R
i=1 φGωi

(Gx)φGωi
(Gy) → k(Gx, Gy).

We refer to the Appendix A for the strategy of sampling random graphs.

Edge-attributed graph embeddings. Now we consider the edge-attributed graphs. We employ the
adjoint graph (Whitney, 1992) (also called the “line graph” or the “edge graph”), which translates
the property of the original graph from edges to nodes. Consequently, we can consider the problem
of embedding edge-attributed graphs as that of embedding node-attributed graphs.

Given a graph G, we can construct its adjoint graph1 G∗ such that i) the nodes in G∗ represent the
edges in G; ii) two nodes in G∗ are adjacent if the corresponding edges in G have the same ending
nodes. A toy graph is shown in Fig. 1. We can see that the edges inG are transformed to the nodes in
G∗. Simultaneously, the edge attributes are converted into the node attributes. Therefore, the node
embeddings of G∗ are equivalent to the edge embeddings of G.

Figure 1: Left: A graph G. Middle: The corre-
sponding incidence matrix CG. Right: The ad-
joint graph G∗ converted from G. For example,
in G, the edges e1, e2, and e3 share a common
node V1. So in G∗, the nodes e1, e2, and e3 are
connected.

Now we can operate the return probability fea-
ture extraction on G∗. Let qj and ~bj respec-
tively be the edge structural representation and
edge attributes of edge ei in G. We can then
characterize the graph with the set (similar with
equation 1), i.e., S(G∗) = {(~qj ,~bj)}mj=1 ⊆
RS × AE . With S(G∗), we can get the edge-
attributed graph representation,

~ZE(G) = ~ZN (G∗) ∈ RR. (4)

Two types of graph embedding fusion. In
some cases, the graph has both node and
edge attributes. Therefore, we will have both
the node-attributed embedding ~ZN (G) and the
edge-attributed embedding ~ZE(G). We fuse them to obtain the final embedding vector ~Z(G) of G,

~Z(G) =
[
~ZT
0 (G),

~ZT
1 (G),

~ZT
2 (G)

]T ∈ R3R, (5)

where ~Z0(G) = ~ZN (G), ~Z1(G) = ~ZN (G) ◦ ~ZE(G), and ~Z2(G) = | ~ZN (G)− ~ZE(G)|.
In algorithm 1, we summarize the procedure of obtaining the vector embedding of graph G =
{V, E ,AN ,AE}. We refer to the Appendix C for the complexity analysis of our algorithm.

1We describe in detail the relationship between the original graph and the adjoint graph in Appendix B
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Algorithm 1 Scalable Attributed Graph Embeddings

Input: The attributed graph sets {Gi}Ni=1.
Output: The graph embeddings { ~Z(Gi)}Ni=1.

1: Compute the node embeddings {S(Gi)}Ni=1and the edge embeddings {S(G∗i )}Ni=1.
2: Sampling random graphs {Gωi

}Ri=1 (See the supplementary material).
3: Compute ~ZN (Gi) (see equation 3) and ~ZE(Gi) (see equation 4), i = 1, 2, ..., N .
4: Compute ~Z(Gi) (see equation 5), i = 1, 2, ..., N .

4 EXPERIMENTS

We conduct experiments to evaluate the effectiveness and efficiency of SAGE, with the goal of
answering the following questions: Q1: How does SAGE perform and scale with respect to the size
of graph embeddings? Q2: How does SAGE scale with respect to the number of graphs? Q3: On
graph classification tasks, how does SAGE perform, compared with other state-of-the-art methods?
Q4: How much improvement does SAGE achieve by considering the node and edge attributes?

Setup. We compare SAGE with 13 state-of-the-art graph kernels and graph neural networks. De-
tailed descriptions of these 25 datasets and 13 baselines are provided in Appendix D. We directly
employ a linear SVM implemented in LIBLINEAR (Fan et al., 2008) since SAGE is a graph-level
embedding. The cost parameter C is selected from {10k, k ∈ {−3,−2, ...2, 3}}. We set the node
embedding size S = 50 and select R in the range of [4,min(2k ≤ N, 2048)], where N the size of
the graph dataset. The ranges of hyperparameters γ and Dmax are {10−3, 10−2, 10−1, 1, 101} and
[3:3:30], respectively. All parameters of the SVM and hyperparameters of our method were opti-
mized only on the training dataset. We perform 10-fold cross-validation to evaluate the performance
of SAGE using 9 folds for training and 1 for testing, and repeat the experiments ten times to report
the averaged accuracies and standard deviations.

Table 1: Classification accuracy (in %) for graphs without node labels

Datasets WL GK DGK PSCN DGCNN RetGK SAGE
COLLAB 74.8± 0.2 72.8± 0.3 73.1± 0.3 72.6± 2.2 73.7± 0.5 80.7± 0.3 (2505s) 82.3± 0.4(1347s)

IMDB-BINARY 70.8± 0.5 65.9± 1.0 67.0± 0.6 71.0± 2.3 70.0± 1.0 71.9± 1.0 (189.6s) 73.8 ± 0.5 (28.6s)
IMDB-MULTI 49.8± 0.5 43.9± 0.4 44.6± 0.5 45.2± 2.8 47.8± 0.9 47.7± 0.3 (158.7s) 49.4± 0.7 (8.7s)

REDDIT-BINARY 68.2± 0.2 77.3± 0.2 78.0± 0.4 86.3± 1.6 – 92.6± 0.3(9.8h) 92.0± 0.2(3453s)
REDDIT-MULTI(5K) 51.2± 0.3 41.0± 0.2 41.3± 0.2 49.1± 0.2 – 56.1± 0.5(20.7h) 57.2± 0.4 (2341s)
REDDIT-MULTI(12K) 32.6± 0.3 31.8± 0.1 32.2± 0.1 41.3± 0.4 – 48.7± 0.2(36.7h) 48.2± 0.2(3987s)

Table 2: Classification accuracy (in %) for graphs with node labels

Datasets WL SP GK DGK PSCN DGCNN RetGK SAGE
ENZYMES 53.4± 0.9 38.6± 1.5 – 53.4± 0.9 – – 60.4± 0.8 (47.8s) 56.7± 0.7 (21.7s)
PROTEINS 71.2± 0.8 73.3± 0.9 71.7± 0.6 75.7± 0.5 75.0± 2.5 75.5± 0.9 75.8± 0.6 (166.6s) 77.2± 0.3 (4.6s)

MUTAG 84.4± 1.5 85.2± 2.3 81.6± 2.1 87.4± 2.7 89.0± 4.4 85.8± 1.7 90.3± 1.1(3.5s) 91.1± 0.7 (0.2s)
PTC-FM 55.2± 2.3 60.5± 1.7 – – – – 61.6± 1.6 (12.1s) 64.7± 1.0 (0.3s)
PTC-FR 63.9± 1.4 61.6± 1.0 – – – – 66.1± 1.6 (12.5s) 67.7 ± 0.8 (5.7s)

PTC-MM 60.6± 1.1 62.9± 1.4 – – – – 65.8± 1.1 (10.6s) 68.2 ± 0.8 (2.5s)
PTC-MR 55.4± 1.5 57.8± 2.1 57.3± 1.1 60.1± 2.6 62.3± 5.7 58.6± 2.5 62.5± 1.6 (12.3s) 62.1± 0.9 (2.3s)

NCI1 85.4± 0.3 74.8± 0.4 62.3± 0.3 80.3± 0.5 76.3± 1.7 74.4± 0.5 84.5± 0.2 (1953.4s) 81.9± 0.2 (140.4s)
DD 78.6± 0.4 >24h – 78.5± 0.3 76.2± 2.6 79.4± 0.9 81.6± 0.3 (1693s) 80.2± 0.5 (801s)

Table 3: Classification accuracy (in %) for graphs with both node labels and node attributes

Datasets SP CSM HGK-WL GH GIK P2K RetGK SAGE
ENZYMES 65.7± 1.1 69.8± 0.7 67.6± 1.0 68.8± 1.0 71.7± 0.8 69.2± 0.4 72.2± 0.8 (73.5s) 69.5± 0.7 (15.3s)
PROTEINS 75.7± 0.4 – 76.7± 0.4 72.2± 0.3 76.8± 0.5 73.4± 0.5 77.6± 0.5 (252.6s) 77.6 ± 0.4 (35.6s)

PROTEINS full 75.8± 0.5 – – 73.1± 0.4 – 76.1 ± 0.3 75.6± 0.3 (270.6s) 77.4 ± 0.3 (4.6s)
BZR 78.2± 1.2 79.4± 1.2 – – – 86.3± 1.1 86.4± 1.2 (34.5s) 87.5± 0.7 (1.0s)

COX2 74.5± 1.3 74.4± 1.7 – – – 80.5± 1.8 79.5± 0.7 (47.9s) 83.5± 0.5 (22.8s)
DHFR 77.6± 1.5 79.9± 1.1 – – – 79.5± 0.8 80.8± 0.4 (124.4s) 81.6± 0.4 (41.8s)
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Figure 2: Accuracy and runtime of SAGE when varying R on datasets AIDS.

Table 4: Classification accuracy for
graphs with node labels and attributes,
and edge labels and attributes. RetGK
only handles node labels and attributes
while SAGE considers all of them.

Datasets RetGK SAGE
BZR MD 63.4± 1.5(15.6s) 70.7± 0.7 (6.6s)

COX2 MD 63.3± 2.2 (35.3s) 67.0 ± 0.9 (25.9s)
DHFR MD 66.2± 1.6 (36.9s) 70.5 ± 0.8 (26.7s)

ER MD 72.8± 1.4 (61.5s) 75.7 ± 0.9 (42.4s)
Cuneiform 38.4± 1.9 (25.4s) 45.8 ± 1.1 (13.3s)

AIDS 99.4± 0.1 (662.4s) 99.5 ± 0.3 (2.2s)

Experimental results of graph classification. To com-
prehensively answer the questions Q3 and Q4, Tables 1,
2, 3, and 4 show that SAGE consistently outperforms or
matches other graph kernel-based and GNN-based base-
lines on all benchmark datasets, highlighting the impor-
tance of developing a graph embedding method that can
take full advantages of all graph information.

Impacts ofR on accuracy and running time. Fig.2 pro-
vides positive answer to our motivating question Q1: we
observe that SAGE converges quickly to its optimal per-
formance when increasing R from a small number to rel-
atively large number (up to 4096). Another observation
is that SAGE exhibits linear scalability with respect to R,
which is consistent with our computational analysis.
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Figure 3: Runtime of SAGE when vary-
ing number of graphs N .

Impact of N on running time. As shown in Fig.3,
these results yields encouraging answers to our motivat-
ing question Q2: SAGE shows the linear scalability in
terms of the number of graphs. This is a highly desired
property of our SAGE embeddings, since most graph ker-
nels have quadratic complexity in the number of graphs,
rendering them hard to scale well.

5 CONCLUSION

In this work, we developed a scalable algorithm for repre-
senting graphs, which may have node and edge attributes.
To this end, we proposed a two-step embedding frame-
work, i.e., the graph node-level embeddings and the graph-level embeddings. Leveraging the adjoint
graphs, we translated the properties of graphs from edges to nodes, which provides a unifying view
for embedding node-attributed and edge-attributed graphs.
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6 APPENDIX

6.1 APPENDIX A: SAMPLING RANDOM NODE-ATTRIBUTED GRAPHS

Here we provide a simple but effective approach for sampling random attributed graphs, which
is similar with the data-dependent random features sampling strategy proposed in (Ionescu et al.,
2017). The “data-dependent” strategy means that we sample graphs from the training dataset
{Gi}Ntr

i=1. However, unlike the existing methods that select a representative set of a whole graph,
we propose to sample parts of graphs as random graphs. This sampling method will generate ran-
dom graphs with various topological connectivities and can help to identify hidden global structures.
We also note that in order to compute φGω (G), it is sufficient to directly use the node embeddings set
sampled from the node embedding space. Algorithm 2 gives our random graph sampling procedure.

Algorithm 2 Random Node-Attributed Graphs Generation

Input: The node embedding sets {S(Gi)}Ntr
i=1 of the training graph dataset, maximal size of the

random graph Dmax.
Output: The node embeddings S(Gω) of a random graph Gω .

1: Uniformly draw a number k in {1, 2, ..., Ntr}.
2: Uniformly draw a number Dk in {1, 2, ..., Dmax}.
3: Randomly draw Dk nodes, i.e., {vi1 , vi2 , ..., viDk

} in the graph Gk.
4: Return node embeddings S(Gω) = {(~pim , ~aim)}Dk

m=1, where {(~pi, ~ai)}nk
i=1 = S(Gk) is the

node embedding set of the graph Gk of nk nodes.

6.2 APPENDIX B: RELATIONSHIP BETWEEN THE ORIGINAL GRAPH AND THE ADJOINT
GRAPH

Given a graph G = {V, E ,AN ,AE}, we can use the binary2 adjacency matrix AG or the incidence
matrix CG to characterize the connectivity information of G. The adjacency matrix AG is defined
as

AG(i, j) =

{
1, if (vi, vj) ∈ E
0, otherwise

, (6)

The incidence matrix CG (see an example in Fig. 1) describes the node-edge correspondence, i.e.,

CG(i, e) = CG(j, e) =

{
1, if e = (vi, vj) ∈ E
0, otherwise

. (7)

Let G∗ be the adjoint graph of G, and let AG∗ be the adjacency matrix of G∗. Then,

CGC
T
G = DG +AG, (8a)

CT
GCG = I +AG∗ , (8b)

where DG is the degree matrix of G, and I is the identity matrix.

The following theorem demonstrate that in almost all the cases, the adjoint graph can preserve all
the structure information of the original graph.

2Note that similarly with the setting in (Zhou & De la Torre, 2012), AG is a binary matrix, even for weighted
graphs. The weights are treated as edge attributes.
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Theorem 1 (Whitney, 1992) Two graphs are isomorphic if and only if their adjoint graphs are
isomorphic, with the exception of the triangle graph K3 and the claw K1,3.

Therefore, the edge embedding can still encode rich topological structure of graphs.

6.3 APPENDIX C: COMPLEXITY ANALYSIS OF SAGE

Now we analyze the total time complexity of embedding N graphs with n nodes and m edges.
i) It respectively takes O(Nn3 + NSn2) and O(Nm3 + NSm2) to compute the S−dimensional
RPFs of all original graphs and those of all corresponding adjoint graphs (Zhang et al., 2018). ii) It
respectively takes O(NRn2) and O(NRm2) to get ~ZN (G) and ~ZE(G), since the time complexity
of computing the energy distance is quadratic. iii) It takes O(NR) to fuse them together. Note that
the main cost comes from the node/edge embedding. Fortunately, in (Zhang et al., 2018), the authors
introduced a Monte-Carlo method, which can significantly reduce the complexity.

6.4 APPENDIX D: EXPERIMENTAL SETTINGS

Datasets. To fully investigate the capability of SAGE to learn topology structure of graphs as
well as different node and edge information, we evaluate SAGE on four types of graph benchmark
datasets Kersting et al. (2016). i) Graphs without node labels (non-attributed): COLLAB, IMDB-
BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI(5K), and REDDIT-MULTI(12K)
are derived from social networks; ii) Graphs with node labels (discrete attributes): ENZYMES,
PROTEINS, and DD are derived from proteins. MUTAG, PTC-FM, PTC-FR, PTC- MM, PTC-
MR, and NCI1 are derived from chemical compouds; iii) Graphs with both node labels and node
attributes: PROTEINS full are proteins and BZR, COX2, and DHFR are chemical compounds;
iv) Graphs with both node and edge information (labels and/or attributes): BZR MD, COX2 MD,
DHFR MD, ER MD, and AIDS are derived from chemical compounds. Cuneiform is derived from
the hand writing.

Setup. In our experiments, we directly employ a linear SVM implemented in LIBLINEAR Fan
et al. (2008) since SAGE is a graph-level embedding. The cost parameter C is selected from
{10−3, 10−2, 10−1, 1, 101, 102, 103}. We set the node embedding size S = 50 and select R in
the range of [4,min(2k ≤ N, 2048)], where N the size of the graph dataset. The ranges of hyper-
parameters γ and Dmax are {10−3, 10−2, 10−1, 1, 101} and [3:3:30], respectively. All parameters
of the SVM and hyperparameters of our method were optimized only on the training dataset. For
all these datasets, we perform 10-fold cross-validation to evaluate the performance of SAGE, using
9 folds for training and 1 for testing. To eliminate the random effects, we repeat the experiments
ten times (thus 100 runs per dataset) and report the averaged prediction accuracies and standard
deviations.

Baselines. For performance comparison on graph classification, we compare SAGE with many
state-of-the-art graph kernels as well as graph neural networks.
Graph kernels. We use the following kernel baselines: i) Weisfeler-Leman Graph Kernel (WL)
Shervashidze et al. (2011), ii) Shortest Path Kernel (SP) Borgwardt & Kriegel (2005), iii) Graphlet
Kernel (GK) Shervashidze et al. (2009), iv) Subgraph matching kernels for attributed graphs (CSM)
Kriege & Mutzel (2012), v) Hashing Weisfeiler-Lehman graph kernels for attributed graphs (HGK-
WL) Morris et al. (2016), vi) GraphHoppers kernels for attributed graphs (GH) Feragen et al. (2013),
vii) Graph invariant kernels for attributed graphs (GIK) Orsini et al. (2015), viii) Propagation kernels
for attributed graphs (P2K) Neumann et al. (2016), ix) Graph kernels based on return probabilities
of random walks (RetGK) Zhang et al. (2018).

GNN-based methods. We use the following GNN-based baselines: i) Deep Graphlet Kernel (DGK)
Yanardag & Vishwanathan (2015), ii) PATCHY-SAN convolutional neural network (PSCN) Niepert
et al. (2016), iii) Deep Graph Convolutional Neural Networks (DGCNN) Wu et al. (2017), iv) Hi-
erarchical graph representation learning with differentiable pooling (DIFPOOL) Ying et al. (2018).
The first model is based on Word2Vec model while the other three are built on convolutional neural
networks. For all baselines (except RetGK), we directly quote the best reported values from their
papers. Since RetGK, which is built on the same node embeddings, has shown to have the best per-
formance compared to other baselines Zhang et al. (2018), the accuracies and computational time of
RetGK are obtained from our own experiments on the same execution environment.
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6.5 APPENDIX E: ABLATION STUDY OF SAGE

Table 5: Ablation Study of SAGE for classification accuracy (in %) on graphs with node and edge
information

Datasets SAGE-plain SAGE-node SAGE-node-edge
BZR MD 62.0± 1.2 69.3± 0.7 70.7± 0.7

COX2 MD 50.3± 0.9 63.3± 1.0 67.0 ± 0.9
DHFR MD 67.2± 0.6 69.2± 0.7 70.5 ± 0.8

ER MD 66.6± 0.8 73.6± 0.7 75.7 ± 0.9
Cuneiform 7.7± 0.4 37.3± 0.9 45.8 ± 1.1

AIDS 99.4 ± 0.3 99.5 ± 0.3 99.5 ± 0.3

Finally, to pursue the answer for question Q4, we perform ablation study of SAGE on graph datasets
that have both node labels (attributes) and edge labels (attributes). Table 5 shows the classification
accuracies of three variants of SAGE: i) SAGE-plain without considering any attribute information,
ii) SAGE-node considering only node label and/or node attributes, and iii) SAGE-node-edge consid-
ering both node and edge information. We can observe that SAGE-node-edge consistently performs
better than both SAGE-node and SAGE-plain with significant improvement. It can be easily seen
that the improvements that SAGE-node gains over SAGE-plain are larger than the improvements that
SAGE-node-edge gains over SAGE-node. We suspect that this is because the node labels/attributes
typically carry more important graph information. But anyway, the edge labels/attributes can also
provide important information since the improvement of SAGE-node-edge over SAGE-node is sig-
nificant.
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