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ABSTRACT

Deep learning models have achieved state-of-the-art performance in classifying
nodes in graph-structured data. However, recent work has shown that these models
are vulnerable to adversarial attacks. In particular, is is possible to adversarially
perturb the graph structure and the node features in order to induce classification
errors. In this paper, we study the effect of recently proposed attacks on graph
models which incorporate structure exploration. We then propose a method for
detecting attacks when they occur.

1 INTRODUCTION

Deep learning models have achieved impressive performance on a wide variety of machine learning
tasks. Driven by this success, such models are increasingly being deployed in real-world systems.
Concurrently, however, it has been discovered that these models are vulnerable to malicious attacks
with grave implications for safety and robustness. Example domains include autonomous vehicles,
speech recognition and malware classification (Carlini & Wagner (2017)). Recent developments in
the study of graph neural networks (Defferrard et al. (2016); Kipf & Welling (2017); Hamilton et al.
(2017); Monti et al. (2017); Gilmer et al. (2017); Veličković et al. (2018); Battaglia et al. (2018))
have led to industrial applications of these models (Ying et al. (2018); Geng et al. (2019); Liu et al.
(2019)). There has thus been a concomitant interest in vulnerabilities of graph deep learning.

In this vein, Zügner et al. (2018) proposed a procedure for generating adversarial perturbations
against graph data, called Nettack. In particular, the main Nettack algorithm perturbs the graph
topology and/or the node attributes so that there is significant degradation in node classification
performance. This motivates the need to explore models and methods which are robust to such
attacks while also necessitating the construction of detectors for such attacks. The first task leads
us to study the effects of random attacks and Nettack on recent graph deep learning models which
apply structure exploration as part of inference (for instance, Veličković et al. (2018); Zhang et al.
(2019)). The second task drives us to study the statistical differences between unperturbed graphs
and perturbed graphs. We note that perturbations to topology are more interesting than perturbations
to features since the predictive power of graph deep learning models is due to the relational data
inherent in graphs. Hence, unless specified otherwise, it will be assumed that there are no feature
perturbations.

∗The two first authors made equal contributions
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2 ATTACKS ON MODELS WITH STRUCTURE EXPLORATION

We briefly describe the structure perturbations studied in this work. First, a random attack targets one
specific node vi in the graph with a perturbation budget ∆. The attack first removes ∆/2 randomly
chosen edges of vi. Next, it attaches ∆/2 edges to nodes which are differently labeled compared to
vi. For our random attacks we set ∆ = dvi + 2, where dvi is the degree of vi.

Nettack also targets a single node with a perturbation budget ∆. However, it provides a more sys-
tematic way of changing the local topology around vi. Briefly, Nettack formulates a (direct) attack
as a two-level optimization problem where the outer optimization decreases the classification mar-
gin for the correct class as much as possible. The inner optimization trains a surrogate model on the
(possibly) perturbed data. The solution to the two-level optimization problem is a perturbed adja-
cency matrix which represents the best possible perturbation to vi. However, the outer optimization
must be constrained so as to produce sensible topological perturbations. In particular, Zügner et al.
(2018) define “unnoticeability” constraints which enforce minimal changes to the overall distribu-
tion of node degrees in the graph.

Observe that the choice of surrogate model and perturbation constraint determines both the efficacy
of the attack as well as the hardness of the two-level optimization problem. The surrogate model
for Nettack is a simplified GCN (Kipf & Welling (2017)) and this raises the question of whether or
not Nettack transfers to models which differ substantially from a basic GCN architecture. Zügner
et al. (2018) provide some evidence that this is the case. However, our experiments with the GAT
(Veličković et al. (2018)) and the BGCN (Zhang et al. (2019)) indicate that Nettack has weaker
transferability to these models (see Section 4). Additionally, the BGCN is significantly more robust
than either GAT or GCN under random attacks. The GAT and BGCN share a commonality in
that both of these models incorporate structure exploration. GAT leverages masked self-attention
layers in order to reduce the impact of edges which do not represent meaningful relationships for
node classification. This represents an implicit form of structure exploration. The BGCN, on the
other hand, incorporates this sort of exploration explicitly. This is achieved by treating the observed
graph as a sample from a parameterized collection of random graphs (Zhang et al. (2019) employ
the stochastic blockmodel). Whereas the GAT is limited to processing only existing edges, the
BGCN is able to handle uncertainty regarding the graph structure as part of the training process.
These observations lead us to hypothesize that incorporating structure exploration not only allows
for competitive performance on graph-structured data but also that it enhances robustness of models
against malicious attacks.

3 DETECTION

As we have seen above, different models exhibit different degrees of susceptibility to adversarial
attacks on topology. However, it is generally true that performance degrades appreciably against
such attacks. Given the potential utility of these models to real applications, it is imperative that
we have methods for detecting attacks when they do occur. Since Nettack is a more focused and
therefore more effective attack, we study the problem of detecting nodes which have been subject
to topological perturbations calculated by Nettack. Moreover, because the GCN is a very popular
model and is also the one most vulnerable to Nettack Zügner et al. (2018), we restrict ourselves to
detecting attacks against GCN only. We study detection for other models in future work.

Recall that Nettack uses a simplified GCN as a surrogate model for generating perturbations. The
predictive power of GCN and other node embedding methods stems from the fact that these al-
gorithms are able to capture similarity between adjacent nodes (Perozzi et al. (2014); Tang et al.
(2015)). In the node embedding literature (Tang et al. (2015)), first-order proximity is characterized
as the similarity of node embeddings for two nodes which are directly connected by an edge. In
addition, second-order proximity is defined as the similarity of the node embedding for two nodes
which share a neighbour.

Intuitively, prediction logits for classification play a role similar to node embeddings. Given that
Nettack exploits the GCN logits of vi, we expect that Nettack creates a discrepancy between the
first-order proximity information of vi and that of the neighbours of vi. We propose measuring this
discrepancy by calculating the mean of the KL divergences between the softmax probabilities of vi
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and those of its neighbours. Mathematically, we compute

prox1(i) =
1

|N (i)|
∑

j∈N (i)

DKL(pi‖pj)

where pi indicates the GCN output softmax probabilities for the ith node. Furthermore, second-order
proximity information is calculated1 using the KL divergence between the softmax probabilities of
pairs of neighbours

prox2(i) =
1

|N (i)| (|N (i)| − 1)

∑
j∈N (i)

∑
k∈N (i)

DKL(pj‖pk)

From Figure 1, we observe a clear difference between the prox1 and prox2 statistics for unperturbed
versus perturbed nodes. This motivates us to define straightforward detection tests by setting thresh-
olds τ1 and τ2 for prox1 and prox2 respectively. That is, given a possibly perturbed node, we flag
the node as being perturbed if either prox1 exceeds τ1 or prox2 exceeds τ2. We describe additional
quantities of interest along with corresponding figures and statistics in the appendix.

We apply the Neyman-Pearson lemma (Neyman & Pearson (1933)) to set the detection threshold for
each statistic. The null hypothesis distributions are modeled as normal distributions. We fit a Gaus-
sian distribution to unperturbed training data via a maximum likelihood approach. We determine an
appropriate detection threshold τ by matching the tail probability to a specific target false positive
rate. The threshold value calculation is done using the inverse cumulative distribution function (cdf).

(a) (b) (c

Figure 1: Box plots of (a) prox1 and prox2 statistics after log transform for unperturbed nodes and
perturbed nodes. (c) and (d), using Gaussian distributions to fit the log-transformed statistics from
the unperturbed nodes (Citeseer dataset).

4 EXPERIMENTS

Setup: For all our experiments, we used the Cora, Citeseer and Polblogs datasets exactly as provided
by the authors of Zügner et al. (2018)2. Whenever Nettack was used, we used (a slightly refactored
version of) the authors’ source code for generating node perturbations. The GCN, GAT and BGCN
architectures and hyperparameters are identical to those of Kipf & Welling (2017), Veličković et al.
(2018) and Zhang et al. (2019) respectively. For both random attack and Nettack, 40 target nodes
are selected exactly as described in Zhang et al. (2019). We perform comparison of accuracy and
classifier margins before and after attacks in accordance with the evaluation procedure of Zhang
et al. (2019).

Results: Figure 2 and Table 1 show the effects of both random attack and Nettack on different
models. We see that GCN and GAT are quite vulnerable to random attacks. Nettack has a more
severe impact on all classification algorithms. However, in both cases, GAT is more robust compared
to GCN with the larger robustness gap occurring for Nettack. The BGCN is extremely robust to
random attacks but is more vulnerable than GAT to Nettack. BGCN is still not as severely impacted
as GCN under Nettack. These results suggest that the Nettack procedure has a limited ability to
transfer across models.

1See Appendix A for how this is carried out in practice.
2Source code and datasets are provided at https://www.kdd.in.tum.de/research/nettack/
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Figure 2: Comparison of random attack (left) and Nettack (right) on GCN, GAT and BGCN on
Citeseer dataset

No attack Random attack Nettack

Accuracy

GCN 87.0% 52.5% 16.0%
BGCN 84.5% 56.5% 27.5%
GAT 84.5% 41.5% 45.0%

Classification margin

GCN 0.506 0.153 -0.459
BGCN 0.521 0.187 -0.149
GAT 0.413 0.016 0.011

(a) Performance for the Cora dataset

No attack Random attack Nettack

Accuracy

GCN 87.5 % 50.0% 15.5%
BGCN 88.5 % 67.5% 31.0%
GAT 96.0% 53.0% 39.0%

Classification margin

GCN 0.506 0.163 -0.459
BGCN 0.521 0.318 -0.149
GAT 0.342 0.027 0.011

(b) Performance for the Citeseer dataset

Table 1: Comparison of accuracy and classification margins for the no attack, random attack and
the Nettack scenarios on the Cora (left) and Citeseer (right) datasets. The results are for 40 selected
target nodes and 5 runs of the algorithms for each target. (Citeseer dataset)

Cora Citeseer Polblogs

Figure 3: ROC curve for Cora, Citeseer and Polblogs using the proposed detection approach

Next, we analyze how well our proposed detection tests perform in attempting to flag nodes per-
turbed by Nettack. In Figure 3, we demonstrate the effectiveness of our proposed detection tech-
niques. A high area-under-the-curve (AUC) score is obtained for all three datasets. While maintain-
ing a false alarm rate below 15%, the proposed perturbed node detection method can achieve 79.5%,
88.5%, 77.5% recall rate on the perturbed nodes. In our experiments, detection using the second-
order proximity statistic performs better than detection using the first-order proximity statistic.

5 CONCLUSIONS

We have studied the effects of random attacks and the recently proposed Nettack (Zügner et al.
(2018)) on GCN, GAT and BGCN. We find that the BGCN is most robust to random attacks and GAT
and (to a lesser extent) BGCN are less vulnerable to Nettack. This suggests that graph deep learning
models which use structure exploration are more robust in general and that Nettack, possibly due
to a restricted surrogate model, lacks transferability. We also found that Nettack perturbations on
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GCN can be detected reasonably reliably with a relatively simple threshold test. We suspect this is
due to the fact that the unnoticeability constraints of Nettack enforce unnoticeability at the global
level but fail to do so at the local level. In future work, we aim to propose unnoticeability metrics
which better capture local graph structure in addition to global structure. On a related note, it
would be interesting to see if our detection test is successful for other kinds of attacks (Zügner et al.
(2019); Dai et al. (2018)). We plan to implement better adversarial attacks against graph learning
models which incorporate these new metrics as constraints. Finally, we note that the evaluation of
attack effectiveness by Zügner et al. (2018) measures performance degradation locally but computes
unnoticeability globally. We aim to resolve this tension going forward.
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A SUPPLEMENTARY MATERIALS

(a) (b) (c

Figure 4: Box plots of (a) prox1 and prox2 statistics after log transform for unperturbed nodes and
perturbed nodes. (c) and (d), using Gaussian distributions to fit the log-transformed statistics from
the unperturbed nodes (Cora dataset).

(a) (b) (c

Figure 5: Box plots of (a) prox1 and prox2 statistics after log transform for unperturbed nodes and
perturbed nodes. (c) and (d), using Gaussian distributions to fit the log-transformed statistics from
the unperturbed nodes (Polblogs dataset).
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Figure 6: Comparison of random attack (left) and Nettack (right) on GCN, GAT and BGCN on Cora
dataset.
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Figure 7: ROC curve for Cora, Citeseer using the proposed detection approach (under Meta-attack)
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