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ABSTRACT

We aim to better understand attention over nodes in graph neural networks and
identify factors influencing its effectiveness. Motivated by insights from the work
on Graph Isomorphism Networks (Xu et al., 2019), we design simple graph rea-
soning tasks that allow us to study attention in a controlled environment. We find
that under typical conditions the effect of attention is negligible or even harm-
ful, but under certain conditions it provides an exceptional gain in performance
of more than 40% in some of our classification tasks. However, we have yet to
satisfy these conditions in practice.

1 ATTENTION MEETS POOLING IN GRAPH NEURAL NETWORKS

The practical importance of attention in deep learning is well-established and there are many argu-
ments in its favor (Vaswani et al., 2017), including interpretability (Park et al., 2016; Deac et al.,
2018). In graph neural networks (GNNs), attention can be defined over edges (Velickovic et al.,
2018; Zhang et al., 2018) or over nodes (Lee et al., 2018a). In this work, we focus on the latter,
because, despite being equally important in certain tasks, it is not thoroughly studied in previous
work (Lee et al., 2018b). To start our description, we first establish a connection between attention
and pooling methods. In convolutional neural networks (CNNs), pooling methods are generally
based on uniformly dividing the regular grid (such as one-dimensional temporal grid in audio) into
local regions and taking a single value from that region (average, weighted average, max, stochastic,
etc.), while attention in CNNs is typically a separate mechanism that weights input X ∈ RN×C :

Z = α�X, (1)

where Zi = αiXi - output for unit (node in a graph) i,
∑N
i αi = 1,� - element-wise multiplication,

N - the number of units in the input (i.e. number of nodes in a graph), C - its dimensionality.

In GNNs, pooling methods generally follow the same pattern as in CNNs, but the pooling regions
(sets of nodes) are found based on clustering (Defferrard et al., 2016; Ying et al., 2018), since
there is no grid that can be uniformly divided into regions in the same way across all examples
(graphs) in the dataset. Recently, top-k pooling (Gao & Ji, 2018) was proposed, diverging from
other methods: instead of clustering “similar” nodes, it propagates only part of the input and this
part is not uniformly sampled from the input. Top-k pooling can thus select some local part of the
input graph, completely ignoring the rest. For this reason at first glance it does not appear to be
logical. However, we can notice that pooled feature maps in Gao & Ji (2018, Eq. 2) are computed in
the same way as attention outputs Z in Eq. 1 above, if we rewrite their Eq. 2 in the following way:

Zi =

{
αiXi, ∀i ∈ P
∅, otherwise

(2)

where P is a set of indices of pooled nodes, |P | ≤ N , and ∅ denotes the unit is absent in the output.

The only difference between Eq. 2 and Eq. 1 is that Z ∈ R|P |×C , i.e. the number of units in the
output is smaller or, formally, there exists a ratio r = |P |/N ≤ 1 of preserved nodes. Accordingly,
we integrate attention and pooling into a single computational block of a GNN. In contrast, in CNNs,
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Figure 1: Three tasks we consider in this work. The values inside the nodes are ground truth attention
coefficients, α(GT )

i , which we find heuristically as described in the Appendix.

it is challenging to achieve this, because the input is defined on a regular grid, so we need to keep
resolution the same for all examples in the dataset after each pooling layer. In GNNs, we can remove
any number of nodes, so that the next layer will receive a smaller graph. When applied on the input
layer, this form of attention-based pooling also brings us interpretability of predictions, since the
network makes a decision only based on pooled nodes.

Despite the appealing nature of attention, it is often unstable to train and conditions under which it
fails or succeedes are unclear. Motivated by insights of Xu et al. (2019) recently proposed Graph
Isomorphism Networks (GIN), we design two simple graph reasoning tasks that allow us to study at-
tention in a controlled environment where we know ground truth attention. The first task is counting
colors in a graph (COLORS), where a color is a unique discrete feature. The second task is counting
the number of triangles in a graph (TRIANGLES). Finally, we confirm our observations on a standrad
benchmark, MNIST (LeCun et al., 1998) (Figure 1).

2 MODEL

We study two variants of GNNs: Graph Convolutional Networks (GCN) (Kipf & Welling, 2016)
and Graph Isomorphism Networks (GIN) (Xu et al., 2019). One of the main ideas of GIN is to
replace the MEAN aggregator over nodes, such as the one in GCN, with a SUM aggregator, and add
more fully connected layers after aggregating neigboring node features. The resulting model can
distinguish a wider range of graph structures than previous models (Xu et al., 2019, Figure 3).

2.1 THRESHOLDING BY ATTENTION COEFFICIENTS

To pool the nodes in a graph using the method from Gao & Ji (2018) a predefined ratio r = |P |/N
(Eq. 2) must be chosen for the entire dataset. For instance, for r = 0.8 only 80% of nodes are left
after each pooling layer. From our illustration in Figure 1, it is clear that this ratio should be different
from graph to graph. Therefore, we propose choosing a threshold value α̃ such that only nodes with
attention coefficients αi > α̃ will be propagated:

Zi =

{
αiXi, ∀i : αi > α̃

∅, otherwise
(3)

2.2 ATTENTION SUBNETWORK

To train an attention model that predicts the coefficients for nodes, we consider two approaches:
(1) Gao & Ji (2018), where a single layer projection p ∈ RC is trained: αpre = Xp; (2) Diff-
Pool (Ying et al., 2018), where a separate GNN is trained:

αpre = GNN(A,X), (4)
where A - adjacency matrix of a graph. In all cases, we use a softmax activation (Vaswani et al.,
2017; Park et al., 2016) instead of tanh in Gao & Ji (2018), because it provides more interpretable
results and ecourages sparse outputs: α = softmax(αpre). To train attention in a supervised way,
we use the Kullback-Leibler divergence loss (see details in the Appendix).
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2.3 CHEBYGIN

In some of our experiments, the performance of both GCNs and GINs is quite poor and, conse-
quently, it is also hard for the attention subnetwork to learn. By combining GIN with ChebyNet (Def-
ferrard et al., 2016), we propose a stronger model, ChebyGIN. ChebyNet is a multiscale extension
of GCN (Kipf & Welling, 2016), so that for the first scale, K = 1, node features are node features
themselves, for K = 2 features are averaged over one-hop neighbors, for K = 3 - over two-hop
neighbors and so forth. To implement the SUM aggregator in ChebyGIN, we multiply features by
node degrees starting from K = 2. We also add more fully connected layers as in GIN.

3 EXPERIMENTS

We introduce the color counting task (COLORS) and the triangle counting task (TRIANGLES) in
which we generate synthetic training and test graphs. We also experiment with MNIST images (Le-
Cun et al., 1998) (Figure 1). In all tasks, we assume to know ground truth attention, i.e. for each
node i we heuristically define its importance in solving the task correctly, α(GT )

i ∈ [0, 1], which is
necessary to train (in the supervised case) and evaluate our attention models. See detailed description
of tasks and model hyperparameters in the Appendix.

Generalization to larger graphs. One of the core strengths of attention is that it makes it easier
to generalize to unseen, potentially more complex, inputs by reducing their complexity to similar
inputs in the training set. To examine this phenomenon, for COLORS and TRIANGLES tasks we add
test graphs that can be several times larger than the training ones and in Table 1 we report results on
two test subsets. In all other experiments we report an average accuracy on the combined test set.
Attention correctness. We evaluate attention correctness using an area under the ROC curve (AUC)
as an alternative to other methods, such as Liu et al. (2017), which can be overoptimistic in some
extreme cases, such as when all attention is concentrated in a single node or attention is uniformly
spread over all nodes. AUC allows to evaluate ranking of α instead of their absolute values. To
evaluate attention correctness of models with global pooling, after training them we removed each
of the nodes and compared the changes in predictions (Zeiler & Fergus, 2014). While this method
shows surprisingly good results in some tasks, it is not built-in in training and thus only implicitly
interprets a model’s prediction (see Figure 5 in the Appendix for examples).

Table 1: Results on three different tasks. AccN≤25 denotes accuracy on the graphs with number of
nodes ≤ 25, i.e. same as in the training set. AccN>25 - accuracy on large graphs. ± denotes we run
experiments 10 times and report mean and standard deviation (high std is explained in Section 3.1).
The best result in each column is boldfaced.

COLORS TRIANGLES MNIST

AccN≤25 AccN>25 Attn AUC AccN≤25 AccN>25 Attn AUC Acc Attn AUC

B
as

el
in

es

GCN, global pool 93.3±1 45.3±25 99.9±0 46.0±1 23.2±1 79.2±0 84.32 69.2
GIN, global pool 94.7±2 8.5±11 98.0±0 49.9±1 22.1±1 77.0±0 95.78 81.6
GIN, unsup top-k 96.1±2 7.1±3 71.5±13 47.0±2 18.3±1 51.7±6 98.33 66.9
ChebyGIN, global pool 99.9±0 44.0±24 100.0±0 66.1±1 29.5±1 79.3±0 98.75 76.4
ChebyGIN, unsup top-k 98.8±2 12.5±10 76.3±20 64.0±5 25.2±2 75.8±6 98.60 75.8

O
ur

s

GIN, unsup 86.4±20 11.4±17 71.3±18 47.8±2 19.7±2 61.6±7 97.95 73.4
GIN, sup 89.2±10 64.7±34 96.5±7 48.9±1 22.2±1 75.9±1 98.44 96.5
ChebyGIN, unsup 96.2±14 14.4±20 67.6±22 67.9±3 25.2±2 75.7±4 98.63 73.9
ChebyGIN, sup 97.2±10 58.6±29 96.0±7 88.5±1 48.7±1 94.8±0 99.03 97.9

U
pp

er
bo

un
d GIN + GT attn 100 100 100 86.0 65.8 100 98.09 100

ChebyGIN + GT attn 99.6 100 100 98.92 100

3.1 DISCUSSION OF RESULTS

GNNs operating in the spatial domain were designed to learn from graphs of arbitrary shape (Bron-
stein et al., 2017), so we expect them to be insensitive to graph size, N , both during training and
testing. Our results in Table 1 (compare columns AccN≤25 and AccN>25) suggest that this as-
sumption is only partially valid and GNNs generalize poorly to unseen graphs of larger size, which
remains an open issue that can be solved by attention as discussed further. Our results in Table 1
confirm that GIN can better distinguish certain graph structures due to its injective SUM aggregator
and more fully connected layers, however, it comes at significant downfall in generalization perfor-
mance, i.e. on larger graphs in the test set. One possible explanation is that the SUM can quickly
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Figure 2: Disentangling factors influencing classification accuracy for COLORS (a)-(c) and TRIAN-
GLES (d). Notice the exponential growth of class. acc. depending on attention correctness (c).0 200 400 600 800 1000
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Figure 3: Influence of initialization on training dynamics for COLORS using GIN trained in an
unsupervised way with an optimal threshold α̃.

explode for large graphs thereby confusing the model. The MEAN aggregator in GCN is less sen-
sitive to graph size and shows better performance on larger graphs, although is weaker on the test
subset with small graphs. Thus, developing a neighborhood aggregator that is best in both test sub-
sets is challenging. One way to alleviate this issue both for GCNs and GINs can be attention, which
reduces the complexity of unseen samples to samples already seen in training.

However, our results show that training attention in an unsupervised way - a widely accepted ap-
proach - does not yield expected results. Moreover, we experience a high variation on the COLORS
dataset. There are several reasons for that. First, we show that initialization of the attention model
is critical (Figure 2). We ran 100 experiments with random initializations of the projection vector
p and measured how performance of both attention and classification is affected depending on how
close (in terms of cosine similarity) the initialized vector was to the optimal one, p = [0, 1, 0]. While
the direct relationship between the classification accuracy and cosine similarity is noisy (Figure 2,
(a)), disentangling this dependency into two functions makes the relationship clearer (Figure 2, (b,
c)). We first observe that initialization has a strong impact on attention, especially in the unsu-
pervised case. Then, interestingly, we found that classification accuracy depends exponentially on
attention correctness and becomes close to 100% only when attention is also very close to being per-
fect. In case of slightly worse attention, even starting from 99%, classification performance drops
significantly. This is an important finding that can also be valid for other more realistic applications.
In the TRIANGLES task we only partially confirm this finding, because our attention models could
not achieve performance high enough to boost classification. However, by observing upper bound
results obtained by training with ground truth attention, we assume that this boost potentially should
happen once attention becomes accurate enough. But, once the attention model is trained on high
dimensional inputs, it is very unlikely to initialize it in a way close to optimal (Figure 2, (d)), thereby
making the effect of the attention model neglible or even harmful (see GIN results in Table 1)

Training attention in a supervised way only partially solves the initialization problem. In case of a
good enough initialization, the network quickly converges to very good results. But in case of a bad
initialization, it takes a very long time to reach similar performance (Figure 4 in the Appendix). In
the unsupervised case, if the initialization is bad, the attention model is stuck in a suboptimal state
(Figure 3, (a)) and even if it recovers after 200 epochs, it never reaches the performance of better
initialized attention (Figure 3, (b,c)).

4 CONCLUSION
We show that learned attention can be extremely powerful in graph neural networks, but only if it
is close to optimal. This is difficult to achieve due to the sensitivity of initialization, especially in
the unsupervised setting where we do not know ground truth attention. Thus, we have identified
initialization of attention models for high dimensional inputs as an important open issue.

4



ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds

ACKNOWLEDGMENTS

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as rep-
resenting the official views or policies of the Department of Defense or the U.S. Government. The authors
also acknowledge support from the Canadian Institute for Advanced Research and the Canada Foundation for
Innovation. We are also thankful to useful feedback from Angus Galloway.

REFERENCES

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.
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APPENDIX

4.1 DATASETS

COLORS. We introduce the color counting task. We generate random graphs where features for each node
are set to one of the three one-hot values (colors): [1,0,0] (red), [0,1,0] (green), [0,0,1] (blue). The task is to
count the number of green nodes, Ngreen. This is a trivial task, but it lets us study the influence of initialization
of the attention model p ∈ R3 on the training dynamics. In this task, graph structure is unimportant and edges
of graphs act like a source of noise. Ground truth attention is α(GT )

i = 1/Ngreen, where i - indices of green
nodes and α(GT )

i = 0 otherwise.

TRIANGLES. Counting the number of triangles in a graph is a well-known task which can be solved ana-
lytically by computing trace(A3)/6, where A - adjacency matrix. This task turned out to be hard for GNNs, so
we add node degree features as one-hot vectors to all graphs, so that the model can exploit both graph structure
and features. Compared to the COLORS task, here it is more challenging to study the effect of initializing p,
but we can still calculate ground truth attention as α(GT )

i = Ti/
∑

i Ti, where Ti is the number of triangles
that include node i, so that α(GT )

i = 0 for nodes that are not part of triangles.

MNIST(LeCun et al., 1998). MNIST contains 70k grayscale images of size 28×28 pixels. We represent
each pixel as a node with features being pixel intensity values and coordinates. Hence we haveN = 784 nodes
in each graph. Edges are formed based on spatial distance between pixels as in Defferrard et al. (2016, Eq. 8).
Each image depicts a handwritten digit from 0 to 9 and the task is to classify the image. Ground truth attention
is considered to be α(GT )

i = 1/Nnonzero, where i - indices of pixels with nonzero intensity, Nnonzero - total
number of such pixels. The idea is that only nonzero pixels are important to determine the digit class. More
sophisticated strategies to define α(GT )

i can be applied.

4.2 NETWORK ARCHITECTURES AND TRAINING.

We build 2 layer GNNs for COLORS and 3 layer GNNs for other tasks with 64 filters in each layer (except for
MNIST where we have more filters). We train them with Adam (Kingma & Ba, 2014), learning rate 0.001,
batch size 32 (see Table 2 for details). For COLORS and TRIANGLES we minimize the regression (MSE)
loss and cross entropy for MNIST. For experiments with supervised attention, we additionally minimize the
Kullback-Leibler divergence loss between ground truth attention α(GT ) and predicted coefficients α:

D =
1

N

∑
i

α
(GT )
i log(

α
(GT )
i

αi
). (5)
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Table 2: Dataset statistics and model hyperparameters.
COLORS TRIANGLES MNIST

# train graphs 500 30,000 60,000

# test graphs N ≤ 25: 2,500 N ≤ 25: 5,000 10,000
N > 25: 2,500 N > 25: 5,000

# classes 10 10 10
# nodes (N ) train 4-25 4-25 784
# nodes (N ) test 4-200 4-100 784

# layers and filters 2 layers, 64 filters in each 3 layers, 64 filters in each 3 layers: 32, 64, 512 filters
Dropout 0 0 0.5
Nonlinearity ReLU ReLU ReLU
# pooling layers 1 2 2
READOUT layer global sum global max global max

GIN aggregator SUM
MLP with 256 hidden units

SUM
MLP with 64 hidden units

SUM
MLP with 64 hidden units

ChebyGIN # scales,K 2 7 2

ChebyGIN aggregator SUM
MLP with 256 hidden units

SUM
MLP with 64 hidden units

SUM
MLP with 64 hidden units

Attention model p applied to input layer
Same arch. as the class. GNN,
butK = 2 for ChebyGIN,
applied to hidden layer (Eq. 4)

p applied to input layer1

Optimal threshold, α̃ 0.03 0.001 0.0001

Training params
50 epochs (lr decay after 35, 45)2

Atnn. models: 100 epochs (lr de-
cay after 85, 95)

100 epochs (lr decay after 85, 95) 30 epochs (lr decay after 20, 25)

1On MNIST, we found that training GNN for the attention model (Eq. 4) is unstable and often does not con-
verge, so we replaced it with the trainable projection vector p.
2Fewer than for attention models due to severe overfitting.0 200 400 600 800 1000
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(a) bad initialization (b) good initialization (c) optimal initialization

Figure 4: Influence of initialization on training dynamics for the COLORS dataset using the GIN
model trained in a supervised way with an optimal threshold α̃. In case of a bad initialization, it
still converges to perfect accuracy, but it takes longer compared to good and optimal initializations.
In case of unsupervised learning of attention, the model can be stuck in a suboptimal state if it was
initialized badly (Figure 3, (a)), which remains an open issue and requires further investigation.
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GCN
global
pool
heatmaps

Attn AUC 77.9 72.6 78.3 68.2 76.3

GIN
global
pool
heatmaps

Attn AUC 77.4 77.2 87.5 74.4 81.3

ChebyGIN
global
pool
heatmaps

Attn AUC 80.9 75.9 78.7 76.1 78.5

GIN
unsup
α values,
layer 1

Attn AUC 81.5 85.7 82.5 88.3 85.1

ChebyGIN
unsup
αpre

values,
layer 2

Attn AUC 60.3 61.9 60.4 62.1 61.4

ChebyGIN
sup
αpre

values,
layer 2

Attn AUC 99.6 99.8 99.6 100 99.5

DiffPool

Figure 5: Visualizations of attention coefficients predicted by different models on five test images
of MNIST. Attention correctness (AUC, %) for each image is shown under each image. We also
trained a DiffPool (Ying et al., 2018) (bottom row) model to show the key differences between
attention-based and clustering-based pooling. We believe both methods are strong and interpretable
depending on the task. In the tasks we considered, attention based pooling is more effective.
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