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ABSTRACT

While neural networks have been used to classify or embed data into lower di-
mensional spaces, they are often regarded as black boxes with uninterpretable
features. Here we propose a novel class of Graph Spectral Regularizations for
making hidden layers interpretable — and even informative of phenotypic
state space. This regularization uses a graph Laplacian and encourages acti-
vations to be smooth either on a predetermined graph or on a feature-space
graph learned from the data itself via co-activations of a hidden layer of the
neural network. We show numerous uses for this including cluster indication
and visualization in biological and image data sets.

1 INTRODUCTION

Many machine learning methods reduce data complexity by lowering the dimensionality of
data (PCA, tSNE, autoencoders) Maaten & Hinton (2008); Hinton, Geoffrey E & Salakhut-
dinov, Ruslan R (2006). However, most dimensionality reduction methods are largely
information-preserving, i.e., the new dimensions are generally irredundant and informative of
the remainder of the feature space, but this often renders features even less interpretable. To
address this issue, we propose a class of regularizations called Graph Spectral Regularization
where the internal layers of a neural network are constrained to take the structure of a graph,
i.e. with graph neighbors activating on similar inputs. We show that graph-structuring a
hidden layer causes useful, interpretable features to emerge.

The main contributions of this manuscript are as follows: (1) Demonstration of interpretability,
and visualizability of resultant feature spaces after application of regularization with standard
graphs such as a rings and grids. (2) A novel method for learning and reinforcing the natural
graph structure for complex feature spaces. (3) Demonstration of graph learning and
abstraction on single-cell RNA-sequencing data.

2 RELATED WORK

Graph Penalties Graph based penalties have been used in the graph signal processing
literature (see, e.g., Belkin et al., 2004; Zhou & Schélkopf, 2004; Shuman et al., 2013), but
are rarely used in a network learning setting. In the biological data setting, Min et al. used
a graph penalty in sparse logistic regression on gene expression data Min et al. (2018).

Graph Neural Networks Graph Neural Networks (GNN) are a related body of work
introduced by Gori et al. (2005), and expanded on by Scarselli et al. (2009), but focus on
a different set of problems (For an overview see Wu et al. (2019)). We focus on learning a
small graph representation of general data while graph neural networks only apply to data
that comes as signals on a predefined feature graph. While a similarity graph between the
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features can be learned prior to applying a GNN;, this graph may be large in high dimensional
datasets, and we believe may be better learned in a compressed feature setting.

3 ENFORCING GRAPH STRUCTURE

To enforce smoothing we use the Laplacian smoothing loss on activation vector on some
activation vector z and fixed Laplacian L we formulate the graph spectral regularization
function G as

G(z,L) =2"Lz

We add it to the reconstruction or classification loss with a weighting term «. For an
autoencoder with input vector  and matching output y this then becomes,

Loss(z,y,z,L) = ||z — yH% + aG(z,L) (1)

and thus optimizes for reconstruction and smoothness along the graph defined by L. This
optimization procedure applies to any multi layer model and valid graph Laplacian. We
apply this algorithm to grid, and hierarchical graph structures on both autoencoder and
classification architectures.

3.1 LEARNING AND REINFORCING AN ABSTRACTED FEATURE-SPACE GRAPH

Instead of enforcing smoothness over a fixed graph, we can learn a feature graph from
the data. Note, that most graph and kernel-based methods are applied over the space of
observations but not over the space of features. One of the reasons is because it is even more
difficult to define a distance between features than it is between observations. To circumvent
this problem, we propose to learn a feature graph in the latent space of a neural network
using feature co-activations as a measure of similarity.

We proceed by creating a graph using feature activation similarity, then applying this graph
using Laplacian smoothing for a number of iterations. This converges to a graph of a latent
feature space at the level of granularity of the number of dimensions in the corresponding
layer.

Our algorithm for learning the graph consists of two phases. First, a pretraining phase where
the model is learned with no graph regularization. Second, we alternate between constructing
the graph from the similarities of the embedding layer features and further training the
network for reconstruction and smoothness on the graph. There are many ways to create a
graph from the feature x datapoint activation matrix. We use an adaptive gaussian kernel,
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where o; is the adaptive bandwidth for node i which we set as the distance to the k' nearest
neighbor of feature. An adaptive bandwidth gaussian kernel is necessary as the scale of the
activations is not fixed in a standard neural network.

Since we are smoothing on the graph then constructing a new graph from the smoothed
signal the learned graph converges to a steady state where the mean squared error acts as
a repulsive force to stop the graph collapsing any further. We present the results of graph
learning a biological dataset and show that the learned structure adds interepretability to
the activations.

4 RESULTS

We present three examples of graph spectral regularization, two cases where we have a
graph structure in mind, and a third where we learn the underlying graph structure of a
high-dimensional biological dataset, and show that this structure has biological relevance.
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Figure 1: Graph architecture, PCA plot, activation heatmaps of a standard autoencoder,
B-VAE Higgins et al. (2017) and a graph regularized autoencoder. In the model with graph
spectral we are able to clearly decipher the hierarchical structure of the data, whereas with
the standard autoencoder or the S-VAE the structure of the data is not clear.

Enforcing Hierarchical Structure We demonstrate graph spectral regularization on
data that is generated with a hierarchical cluster structure. Our data contains three large-
scale structures, each comprising two Gaussian subclusters generated in 15 dimensions (See
Figure 1). We use this dataset as it has both global and local structure. We demonstrate
that our graph spectral regularized model is able to pick up on both the global and local
structure of this dataset. We use a graph-structure layer with six nodes with three connected
node pairs and employ the graph spectral regularization. After training, we find that each
node pair acts as a “supernode” that detects each large scale cluster. Within each supernode,
each of the two nodes encodes one of each of the two Gaussian substructures. Thus, this
specific graph topology is able to extract the hierarchical topology of the data.
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Figure 2: Shows average activation by digit over a 64 (8x8) 2D grid using graph spectral
regularization and convolutions following the regularization layer. Next, we segment the
embedding space by class to localize portions of the embedding associated with each class.
Notice that the digit 4 here serves as the null case and does not show up in the segmentation.
Finally, we show the top 10% activation on the embedding of some sample images. For two
digits (9 and 3) we show a normal input, a correctly classified but transitional input, and a

misclassified input. By inspection of the embedding space we can see the highlighted regions
of the embedding space correlate with the semantic description of the digit type.

Embedding

Enforcing Grid Structure on Mnist On MNIST we show the capability of graph
spectral regularizations to create pseudo-images from data. We apply regularization to
a classifier of mnist digits. Without graph-structured regularization, activations appear
unstructured to the human eye and as a result are hard to interpret (See Figure 2). However,
using graph spectral regularization over a grid graph we can make this representation more
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visually distinguishable. Since we can now take this embedding as an image, it is possible to
use a standard convolutional architecture in subsequent layers in order to further filter the
encodings. When we add 3 layers of 3x3 2D convolutions with 2x2 max pooling we see that
representations for each digit are compressed into specific areas of the image. This leads to
the formation of receptive fields over the network pertaining to similar datapoints. Using
these receptive fields, we can now extract the features responsible for digit classification. For
example, features that contribute to the activation of the top right of our lattice we can
associate with those features that contribute to being in the class of nines.
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Figure 3: Shows correlation between a set of marker genes for specific cell types and
embedding layer activations. First with the standard autoencoder, then our autoencoder
with graph spectral regularization. The left heatmap is biclustered, the right heatmap is
grouped by connected components in the learned graph. We can see progression especially in
the largest connected component where features on the right of the component correspond
to less developed neurons.

Extracting Cluster and Trajectory Structure on Single-cell RNA-Sequencing
Data In Figure 3 we learn a graph on a single-cell RN A-sequencing dataset of over 4000
cells and over 8000 genes. The data contains a set of cells in the process of developing from
neural stem cells to full neurons in the mouse brain. While there are many gene modules that
contribute to the neuronal development, there are some states that have been studied. We
use a list of cell type marker genes to validate our method. We use 1000 PCA components
of the data in an autoencoder with a 20 dimensional embedding space. We learn the graph
using an adaptive bandwidth gaussian kernel with the bandwidth for each feature set to the
euclidean distance to the nearest neighboring feature.

Our graph learns six components that represent meta features over the gene space. We can
identify each with a specific type of cell or related types of cells. For example, the light
green component represents the very early stage neural stem cells as it is highly correlated
with increased Aldoc, Pax6 and Sox2 gene expression. Most interesting to examine is cluster
six, the largest component, which represents development into mature neurons. Within this
component we can see a progression from intermediate progenitors on the left (showing
Eomes expression) to more mature neurons with higher expression of Tbrl and Sox5. With
a standard autoencoder we cannot see progression structure like that in component six.
While some of the more global structure is captured, we fail to see the data progression from
intermediate progenitors to mature neurons.

5 CONCLUSION

We have introduced a novel method for regularizing features of the internal layers of a neural
network to take the shape of a graph. We show that useful features emerge on datasets that
are in the form of a ring, a grid, or cell type indicators on single-cell RN A-sequencing data.
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Furthermore, when the intended graph is not known apriori, we have presented a method
for learning the graph structure. This regularization framework has broad applicability for
future work seeking to reveal important structure in real-world biological datasets as we
have demonstrated here.
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