
Published as a conference paper at ICLR 2019

A SIMPLE YET EFFECTIVE BASELINE FOR NON-
ATTRIBUTED GRAPH CLASSIFICATION

Chen Cai & Yusu Wang
Department of Computer Science
Ohio State University
cai.507@osu.edu, yusu@cse.ohio-state.edu

ABSTRACT

To better understand the machinery of various methods for the graph classification
task, we develop a simple yet meaningful graph representation and explore its
effectiveness and limitation. Interestingly, this degree based simple representation
achieves similar performance as the state-of-the-art graph kernels and graph neural
networks for non-attributed graph classification. Its connection to graph neural
networks and Weisfeiler-Lehman kernel is also presented.

1 INTRODUCTION

Graph-type data are ubiquitous across many scientific fields. Recently, there has been a surge of
approaches that aim to learn representations that encode structure information about the graph. On
the high level, the methods can be categorized to be graph-kernel based, or graph neural network
based. The problem remains challenging. For example, the design of graph kernel and graph neural
networks are often influenced by the (sub-)graph isomorphism problem, where one aims to make
sure that features of non-isomorphic graphs are likely different. On the one hand, graph isomor-
phism is computationally hard 1. On the other hand, there is no guarantee that graph kernels/neural
networks with the strongest expressive power in terms of differentiating non-isomorphic graphs will
generalize the best.

In this paper, we are interested in better understanding existing approaches for graph classification
tasks, in an attempt to gain a gradual understanding of their powers and limitations. As the first
step, we develop a simple graph representation based on local information for non-attributed graphs,
which we refer to as Local Degree Profile (LDP). One of our initial goals was to understand in which
scenarios the simple summary shall fail.

Interestingly, this simple graph representation achieves similar performance as the state-of-the-art
graph kernels and graph neural networks for non-attributed graph classification, and in fact, outper-
forms many existing more sophisticated representations. We report these results as we believe they
make the following contributions:

• While our LDP graph representation is simple, it is intuitive and we show its competitive
performance in graph classification for a range of graph datasets. This graph representation
is computationally efficient (linear-time) to compute. We also provide a simple connection
between our representation with the graph neural networks.

• We note that these observations are only for the task of graph classification; while exist-
ing methods (especially graph neural network based approaches) are often designed for a
broader scope, including for node embedding and for link prediction purposes. The results
are also likely biased due to the limited amount of benchmark datasets available, and thus
do not form the basis to dismiss any existing graph classification methodology.
Nevertheless, the good performance of our simple graph representation raises concerns
about the effectiveness of current benchmark datasets for evaluating different algorithms for
non-attribute graph classification. It calls for the development of new, more comprehensive,

1The graph isomorphism testing itself has only very recently shown to be solvable in quasi-polynomial time
Babai (2016). The subgraph isomorphism, on the other hand, is NP-complete.

1



Published as a conference paper at ICLR 2019

benchmark datasets for the better evaluation of different graph learning methods as well as
for more rigorous analysis of the power and limitation of graph representations.

2 A SIMPLE BASELINE FOR GRAPH CLASSIFICATION

2.1 OUR MODEL

We denote a graph as G(V,E) where V is the set of nodes and E is the set of edges in G.
For each graph G we extract features for each node in the following way. For each node
v ∈ G(V ), let DN(v) denote the multiset of the degree of all the neighboring nodes of v, i.e.,
DN(v) = {degree(u)|(u, v) ∈ E}. We take five node features, which are (degree(v), min(DN(v)),
max(DN(v)),mean(DN(v)), std(DN(v))). In other words, each node feature summarizes the degree
information of this node and its 1- neighborhood. We aggregate features over different nodes in the
same graph by performing either a histogram or an empirical distribution function (edf) operation,
i.e, mapping all node feature into a histogram or an empirical distribution.

We then repeat the same procedure for all five node features and concatenate all the feature vectors
as the input feature for SVM classifier. For a fair comparison, we follow the convention in the graph
kernel literature. We perform 10-fold cross validation ten times and report the average accuracy.
Our model takes linear time to extract features. For simplicity, in the rest of the paper, we denote
our baseline as Local Degree Profile (LDP). For the ease of the presentation, we leave the details
about hyper-parameters of our model, complexity comparison, and discussion on its variants and
limitations in the appendix.

2.2 RELATION TO GRAPH NEURAL NETWORKS

Our baseline can be seen as a variant of GNN that is used to learn useful graph representations in
an end-to-end manner. GNNs use the graph structure and node features Xv to learn a representation
vector of a node, hv , or the entire graph, hG. Modern GNNs follow a neighborhood aggregation
strategy, which involves iteratively updating the representation of a node by aggregating the repre-
sentations of its neighbors. Formally, the k-th layer of a GNN is

a(k)v = AGGREGATE(k)({h(k−1)
u : u ∈ N(u)}), h(k)

v = COMBINE(k)(h(k−1)
v , a(k)v ) (1)

where h(k)
v is the feature vector of node v at the k-th iteration/layer. h(0)

v = Xv initially, and N(v) is
a set of nodes adjacent to v. The choices of AGGREGATE(k)(·) and COMBINE(k)(·) in GNNs are
crucial. A number of architectures for AGGREGATE have been proposed (Kipf & Welling, 2016;
Hamilton et al., 2017).

For graph classification the READOUT function aggregates node features from the final iteration
to obtain the entire graph’s representation hG = READOUT({h(K)

v |v ∈ G}). READOUT can
be a simple permutation invariant function such as summation or a more sophisticated graph-level
pooling function (Ying et al., 2018; Zhang et al., 2018a).

For our baseline, AGGREGATION is a simple function that summarizes the statistics of neighboring
degree distribution by computing min, max, average, and standard deviation. We do not introduce
trainable weights. The COMBINE function is a simple concatenation and READOUT is either
histogram or empirical distribution operation. The number of iteration is K = 2 in our case. From
this point of view, LDP captures the essential elements of GNN, and this may partially explain its
effectiveness. However, it is quite surprising to us that without any learning we can still achieve
results comparable to many GNNs. We suspect that the use of AGGREGATION or READOUT
function may play an important role. Interestingly, in a recent paper, Xu et al. (2018) explore the
expressiveness of different pooling strategies and conclude that sum pooling is more powerful than
mean and max pooling. To leverage this, we introduce “sum(DN(v))” as an extra node feature in
the hope of achieving better results. We did a preliminary experiment on REDDIT 5K and REDDIT
12K but only achieved marginal improvement (0.5 percent). This might be due to the fact that our
baseline does not involve any learning. Thus in the reported results, this “sum(DN(v))” feature is
not deployed.

2



Published as a conference paper at ICLR 2019

Discussion on comparison to Weisfeiler-Lehman Kernel We can also see the similarity between
LDP and the Weisfeiler-Lehman kernel/isomorphism test with two iterations. Both methods start
from the local node feature and build new feature from the previous step through graph topology.
However, a key difference between WL kernel and LDP is that the hashing step (label compression)
of WL kernel does not necessarily capture the local similarities: even two nodes with very simi-
lar neighborhood could be mapped to totally different labels, and perturbing the edges by a small
amount will lead to completely different hashing features. LDP instead uses the statistics of the
degree distribution of local neighborhood that is more robust and able to capture the node similar-
ity. We can see in the experiment section that after incorporating the features that able to capture
similarity of graph structures, LDP outperforms WL kernel by a large margin on social network
dataset.

3 EXPERIMENTAL RESULTS

Datasets. We collect commonly used graph datasets from existing graph classification literature
as our benchmark data. For non-attribute graphs, we use the movie collaboration datasets IMDB
BINARY and IMDB MULTI, the scientific collaboration data COLLAB, the social network datasets
REDDIT BINARY, REDDIT 5K, and REDDIT 12K. For non-attribute graphs, we use the protein
dataset ENZYMES, PROTEINS and D&D, chemical compounds datasets MUTAG, PTC, and NCI1.
See appendix for more details.

Experimental setup All experiments are performed on a single Intel Xeon CPU E5-2630 v4@
2.20GHz × 40 and 64GB RAM machine. We compare our baseline with 6 state-of-the-art graph
kernels(Shervashidze et al., 2011; Yanardag & Vishwanathan, 2015; Zhang et al., 2018b; Verma &
Zhang, 2017; Kriege et al., 2016): Weisfeiler-Lehman Kernel (WL) , Graphlet kernel (GK), Deep
Graph Kernel (DGK) , RetGK, FGSD, Weisfeiler-Lehman optimal assignment kernel (WL-OA),
and 5 graph neural networks(Niepert et al., 2016; Hamilton et al., 2017; Ying et al., 2018; Xu et al.,
2018; Atwood & Towsley, 2016): PATCHYSAN (PSCN), GRAPHSAGE , DIFFPOOL, Graph Iso-
morphism Network (GIN), Diffusion-convolutional neural networks (DCNN), Deep Graph CNN
(DGCNN).. In particular, among above graph kernels, only FGSD and GK does not utilize label
information for chemical/protein graphs, and for GNNs, the size of chemical/protein graphs are too
small and their performance is not reported for attribute graphs in the most paper. All the result is
taken from published paper except the baseline. The code is available on github. 2

Results. The results are shown in Table 2-4. For non-attribute graphs, our results show that com-
bining our simple degree-based features and the kernel machine, we can beat WL, GK, DGK ker-
nels by a large margarin consistently, and achieve the results on par with more recent graph kernels
such as RetGK and WL-OA (no more worse than 2.5 percent) and perform even better on certain
datasets. On average, we are slightly better than RetGK for non-attribute graphs. However, our
method is much simpler and faster than all of the previous graph kernels. What is more, we find that
even using the only linear kernel, which yielding our final model equivalent to local feature + linear
SVM, performance on REDDIT BINARY, REDDIT 5K, and REDDIT 12K rarely degrades.

Comparing with GNN, although many accuracy data is not available, we can still clearly see that the
state-of-the-art GNNs do not show significant improvement over our baseline. Since our model can
be seen as a simple variant of GNN where no end-to-end learning is involved, we interpret current
result more as a dataset problem instead of an algorithm problem: current benchmark is no longer
suitable for evaluating different algorithms.

For chemical graphs, we can treat them as graphs without the label, and apply the same method.
We can also introduce one more feature for each node, which is simply the node label (scalar) in
the original data. Adding label information in this way is certainly not principled as our results are
no longer invariant to label permutation. However, our goal in this paper is not to handle attribute
graphs so we settle on this hack. As we can see, LDP is still quite good on MUTAG, PTC, and
PROTEIN datasets that do not have rich label information. For graphs with rich labels such as
ENZYME, DD, and NCI1, LDP and its variant is much worse than the other kernels that can better
utilize label information. This also suggests that MUTAG, PTC, and PROTEIN are not sufficient

2https://github.com/Chen-Cai-OSU/LDP

3



Published as a conference paper at ICLR 2019

Table 1: Comparison with Graph Kernel for non-attribute graph classification. Baseline * means
using only linear SVM.

WL GK DGK RetGk FGSD WL-OA LDP LDP*

COLLAB 74.8 72.8 73.1 81.0 80.0 80.7 78.1 73.9
IMDB BINARY 70.8 65.9 67.0 71.9 71.0 - 75.4 67.7
IMDB MULTI 49.8 43.9 44.6 47.7 45.2 - 50.0 45.4
REDDIT BINARY 68.2 77.3 78.0 92.6 86.5 89.3 92.1 89.8
REDDIT 5K 51.2 41.0 41.3 56.1 47.8 - 55.9 54.2
REDDIT 12K 32.6 31.8 32.2 48.7 - 44.4 47.8 46.7

Average 57.90 55.45 56.03 66.33 - - 66.55 62.95

Table 2: Comparison with graph neural networks for non-attribute graph classification. Baseline *
means using only linear SVM.

PSCN GRAPHSAGE DIFFPOOL GIN DCNN DGCNN LDP LDP*

COLLAB 72.6 68.25 75.50 80.2 52.1 73.7 78.1 73.9
IMDB BINARY 71.0 - - 75.1 49.1 70.0 75.4 67.7
IMDB MULTI 45.2 - - 52.3 33.5 47.8 50.0 45.4
REDDIT BINARY 86.3 - - 92.4 - - 92.1 89.8
REDDIT 5K 49.1 - - 57.5 - - 55.9 54.2
REDDIT 12K 41.3 42.24 47.04 - - - 47.8 46.7

to evaluate different methods. More discussion on the variants and limitations of the baseline is
presented in the appendix.

Table 3: Comparison with other graph kernels for attribute graph classification. LDP + Label means
adding the label as an extra node feature.

WL GK DGK PSCN RetGk FGSD WL-OA LDP LDP + Label

MUTAG 84.4 81.6 87.4 89.0 90.3 92.1 84.5 90.1 90.3
PTC 55.4 57.3 60.1 62.3 62.5 62.8 63.6 61.7 64.5
ENZYME 53.4 - 53.4 - 60.4 - 59.9 35.3 40.9
PROTEIN 71.2 71.7 75.7 75.0 75.8 73.4 76.4 72.7 73.7
DD 78.6 78.5 - 76.2 81.6 77.1 79.2 75.5 77.1
NCI1 85.4 62.3 80.3 76.3 84.5 79.8 86.1 73.0 74.3

4 CONCLUSION AND DISCUSSION

Most graph kernels aim to capture graph topology and graph similarity in the hope of improving clas-
sification accuracy. Our experiment suggests that this is not yet well-reflected on current benchmark
datasets for non-attribute graphs. This calls for the construction of better and more comprehensive
benchmark datasets for understanding and analyzing graph representations. On the other hand, we
emphasize that in scenarios where both graph nodes and edges have certain associated features,
proper handling labels can significantly improve the classification accuracy, as is shown clearly for
the NCI1 dataset. Graph kernels have been rather effective in incorporating node/edge attributes. It
will be an interesting question to see how to incorporate attributes in a more effective yet still simple
manner in our graph representation.

Also, although there are large scale chemical graphs datasets available (Hachmann et al., 2011;
Ruddigkeit et al., 2012), a benchmark dataset that contains many large graphs is still missing. We
plan to create such benchmark dataset for future use. In general, while not addressed in this paper,
we note that understanding the power and limitation of various graph representations, as well as

4



Published as a conference paper at ICLR 2019

the types of datasets with respect to which they are most effective, are crucial, yet challenging and
remain largely open.

ACKNOWLEDGEMENT

This work is partially supported by NSF under grants CCF-1740761 and RI-1815697. We thank
Siyuan Ma, Han Fu and Shuaichen Chang for helpful comments and discussions.

5



Published as a conference paper at ICLR 2019

A RELATED WORK

A.1 GRAPH KERNELS

There are various graph kernels, many of which explore the R-convolutional framework (Haussler,
1999). The key idea is to decompose a whole graph into small substructures and build graph kernels
based on the similarities defined for these components. For example, graphlet kernels (Shervashidze
et al., 2009) are based on small subgraphs up to a fixed size. Weisfeiler-Lehman graph kernels
(Shervashidze et al., 2011) is based on subtree patterns. More recently, new methods have been
proposed to compare graphs, which is done by quantifying the dissimilarity between the distributions
of pairwise distances between nodes. Schieber et al. (2017) uses the shortest path distance, and
Verma & Zhang (2017) uses the diffusion distance.

A.2 GRAPH NEURAL NETWORK

Another way to tackle graph classification involves developing graph neural network (GNN). GNN
broadly follows a recursive neighborhood aggregation(or message passing) scheme, where each
node aggregates feature vectors of its neighbors to compute its new feature vector. Repeating the
above procedure k times, a node is represented by its transformed feature vector. The representation
of an entire graph can be obtained by pooling, for example, by summing the feature vectors over all
nodes in the graph.

Many GNN variants with different neighborhood aggregation and graph-level pooling schemes have
been proposed (Defferrard et al., 2016; Duvenaud et al., 2015; Hamilton et al., 2017; Li et al., 2015;
Kearnes et al., 2016; Kipf & Welling, 2016; Velickovic et al., 2017; Ying et al., 2018). Empirically,
these GNNs have achieved state-of-the-art performance in many tasks such as node classification,
link prediction, and graph classification. However, the design of new GNNs is often based on
empirical intuition, heuristics, and experimental trial-and-error. The theoretical understanding of
the properties and limitations of GNNs is somewhat limited, although there exists very recent work
starting to address this issue (Xu et al., 2018).

A.3 BASELINE METHOD

We remark that there has been a few works that draw attention to the potential problems of widely
used graph datasets. Specifically, Orlova et al. observe that even by using simple graph features
such as the number of nodes, they could achieve similar classification performance on common
benchmark datasets compared to early graph kernels. Their results show that we cannot solely rely
on these data sets to show the performance of a graph kernel. However, their work focuses on
attributed graphs, while our work focuses on non-attributed graphs. Very recently, in an independent
work by Wu et al. (2019), the authors hypothesize that the nonlinearity between GCN layers is
not critical. They remove the non-linearities and develop a simple network called Simple Graph
Convolution. This network works well on text classification, semi-supervised user geolocation,
relation extract, zero-shot image classification, and graph classification. While our work shares
some similarities with theirs, our paper was developed independently.

B DETAILS OF LDP

Computational complexity: In feature extraction, we only need to count the degree for each node
and save the statistics of 1- neighborhood for each node. This can be done in O(E) time. To map
V numbers into B bin takes O(V ) time so the total complexity is O(E) time. This matches the
lower bound of reading a graph. In comparison, we attach the table summarizing the complexity of
computing various graph kernels, both exactly and approximately. 3

3Deep graph kernel requires corpus generation to build the kernel and we do not find explicit compu-
tational complexity in the original paper so it is not listed in the table. The kernels in the table are WL
(Weisfeiler-Lehman kernel), WL-OA (Weisfeiler-Lehman optimal assignment kernel), GK (Graphlet Kernel),
RetGK (Graph Kernels based on Return Probabilities of Random Walks), MLG (Multiscale Laplacian Kernel),
FGSD (family of graph spectral distances).

6



Published as a conference paper at ICLR 2019

The more computationally expensive part of our algorithm is the SVM. For linear SVM it takes
O(nd2) time where n is the number of features and d is the dimension of features. For non-linear
kernel it is O(n2d). Although there is an efficient algorithm available to approximate the feature
map (Rahimi & Recht, 2008), we can still afford running the original algorithm in a relatively short
time.

Table 4: Complexity of various graph kernels. With a slight abuse of notation, V is the number of
nodes and E is the number of edges in the larger graph among two graphs. For WL, h is the number
of iterations. For GK, d < V and k ∈ {3, 4, 5}. For RetGK, return probabilities of random walks
need to be calculated before computing the kernel, which takes O(V 3 + (S + 1)V 2) exactly where
S is the number of steps, and takes O(V SM) approximately where M is number of Monte Carlo
simulations used for simulation of random walks. D is the number of random Fourier features and
d is the dimension of input feature. For MLG, Ṽ is the number of sampled vertices and Ṽ < V. For
FGSD, r the number of terms of polynomials used to approximate f(L).

Complexity WL/WL-OA GK RetGK MLG FGSD LDP
Approximate - O(V dk−1) O(D + d) O(V 3) O(rE) -
Worst-Case O(hE) O(V k) O(V 2) O(Ṽ 3) O(V 3) O(E)

Hyperparameter: Below we describe the hyper-parameters of our model. They arise naturally
when discretizing continuous node features on graphs for the down-stream classifier. In practice,
they are robust and easy to tune.

Bin size. In our experiment, we map the neighborhood degree distribution into a different number of
n bins of uniform width. We try different sizes from {30, 50, 70, 100} to discretize the distribution.

Normalization. There are two natural ways of normalization for our method. The first one is to
normalize every graph separately so that the value represents the relative degree. The second one is
to normalize the whole dataset by finding the largest degree value across all the graphs. In practice,
we do not see the consistent advantage of one normalization over the other so we try both and pick
the one gives best training accuracy.

Empirical Distribution versus Histogram. We try to represent node features over a graph by both
a histogram or an empirical distribution because empirical distribution is more stable with respect
with the particular choice of bin size. It indeed yields better results than the histogram on certain
dataset so in experiments we treat this choice as a hyperparameter.

Linear vs logarithmic scales. The degree distribution of many real-life networks follows the power
law, which is usually visualized by log-log scale. We try both log scale and linear scale and notice
that log scale yields better results for REDDIT 5K and REDDIT 12K.

SVM parameter. The C parameter is selected from {10−3, 10−2, ..., 102, 103} and the Gaussian
bandwidth is selected from {10−2, 10−1, 1, 101, 102}.
Remark. In general, all those hyper-parameters except the SVM parameters are not sensitive. Fine
tuning of the above hyper-parameters usually yields an improvement of about 2 percentage.

C VARIANTS AND LIMITATIONS OF BASELINE:

Surprised by the performance of our baseline that is based on purely local node feature, one natural
extension is to incorporate more sophisticated 1) node features and 2) edge features in the hope of
capturing the local and global graph topology better and therefore improving the accuracy.

To test this, we have experimented adding other node features (also more expansive to compute)
such as closeness centrality, Fiedler vector (the second smallest eigenvectors of graph Laplacian),
and Ricci curvature (Lin et al., 2011) of graphs. Interestingly, we observe that none of the above
features yields any significant improvement consistently across all datasets.

For edge features, we compute all-pair-shortest path distance and add the histogram of distance
distribution along with degree-based features for small chemical graphs (For the social networks

7



Published as a conference paper at ICLR 2019

dataset, it is too costly to compute all pair shortest path distance and we do not observe any im-
provement in the preliminary experiments). There is about 2 percentage improvement consistently
over different datasets. 4 This indicates that our local method fails to capture more global informa-
tion which is shown to be useful for chemical/protein classification 5.

Table 5: Adding distance distribution improves the accuracy. Compared with FGSD and GK, which
are the only two models that also does not use label information, we can see after adding all pair
shortest path distance, we can match their result on all datasets except the NCI1 for FGSD. This in-
dicates that using only local degree-based features is not enough for chemicals/protein classification

FGSD GK LDP LDP + distance

ENEZYME - - 35.3 37.2
PROTEIN 73.4 71.7 72.7 74.7

DD 77.1 78.5 75.5 77.5
NCI1 79.8 62.3 73.0 75.6

D DATASETS DESCRIPTION

The statistics of the benchmark graph datasets used in the paper are reported in Table 6. We describe
these datasets in detail in the next section.

D.1 NON-ATTRIBUTED GRAPH DATASETS

IMDB-BINARY (Yanardag & Vishwanathan, 2015) is a movie collaboration dataset that consists
of the ego-networks of 1,000 actors/actresses who played roles in movies in IMDB. In each graph,
nodes represent actors/actress, and there is an edge between them if they appear in the same movie.
These graphs are derived from the Action and Romance genres.

IMDB-MULTI (Yanardag & Vishwanathan, 2015) is generated in a similar way to IMDB-BINARY.
The difference is that it is derived from three genres: Comedy, Romance, and Sci-Fi.

REDDIT-BINARY (Yanardag & Vishwanathan, 2015) consists of graphs corresponding to on-
line discussions on Reddit. In each graph, nodes represent users, and there is an edge between
them if at least one of them respond to the other’s comment. There are four popular subreddits,
namely, IAmA, AskReddit, TrollXChromosomes, and atheism. IAmA and AskReddit are two ques-
tion/answer based subreddits, and TrollXChromosomes and atheism are two discussion-based sub-
reddits. A graph is labeled according to whether it belongs to a question/answer-based community
or a discussion-based community.

REDDIT-MULTI(5K) (Yanardag & Vishwanathan, 2015) is generated in a similar way to REDDIT-
BINARY. The difference is that there are five subreddits involved, namely, worldnews, videos, Ad-
viceAnimals, aww, and mildlyinteresting. Graphs are labeled with their corresponding subreddits.

REDDIT-MULTI(12K) (Yanardag & Vishwanathan, 2015) is generated in a similar way to
REDDIT-BINARY and REDDITMULTI(5K). The difference is that there are eleven subreddits
involved, namely, AskReddit, AdviceAnimals, atheism, aww, IAmA, mildlyinteresting, Show-
erthoughts, videos, todayilearned, worldnews, and TrollXChromosomes. Still, graphs are labeled
with their corresponding subreddits.

4We ignore MUTAG and PTC for the reason that the datasets are too small, and that even LDP + Label can
achieve the best result.

5For graphs, two vertex sets are called non-homometric if the multi-sets of distances determined by them are
different. It is unknown whether there exists any distance metric under which two vertex sets of non-isomorphic
graphs are always non-homometric; But it is easy to show that the shortest path distance does not satisfy the
requirement: a cycle of four vertices and a triangle with a pendant edge are non-isomorphic but have the same
multi-set of all pairwise shortest path distances, i.e., {1, 1, 1, 1, 2, 2}

8



Published as a conference paper at ICLR 2019

Table 6: Statistics of the benchmark graph datasets

Datasets graph # class # average nodes # average edges # label #

MUTAG 188 2 17.93 19.79 7
PTC 344 2 14.29 14.69 19
ENZYME 600 6 32.63 64.14 3
PROTEIN 1113 2 39.06 72.82 3
DD 1178 2 284.32 715.66 81
NCI1 4110 2 29.87 32.30 37
IMDB BINARY 1000 2 19.77 96.53 -
IMDB MULTI 1500 3 13.00 65.94 -
REDDIT BINARY 2000 2 429.63 497.75 -
REDDIT 5K 4999 5 508.82 594.87 -
REDDIT 12K 12929 11 391.41 456.89 -

D.2 GRAPHS WITH DISCRETE ATTRIBUTES

MUTAG (Debnath et al., 1991) consists of graph representations of 188 mutagenic aromatic and
heteroaromatic nitro chemical compounds. These graphs are labeled according to whether or not
they have a mutagenic effect on the Gram negative bacterium Salmonella typhimurium.

PTC (Helma et al., 2001) consists of graph representations of chemical molecules. In each graph,
nodes represent atoms, and edges represent chemical bonds. Graphs are labeled according to car-
cinogenicity on rodents, divided into male mice (MM), male rats (MR), female mice (FM), and
female rats (FR).

ENZYMES and PROTEINS (Borgwardt et al., 2005) consist of graph representations of proteins.
Nodes represent secondary structure elements (SSE), and there is an edge if they are neighbors along
the amino acid sequence or one of three nearest neighbors in space. The discrete attributes are SSE
types. The continuous attributes are the 3D length of the SSE. Graphs are labeled according to which
EC top-level class they belong to.

DD (Dobson & Doig, 2003) consists of graph representations of 1,178 proteins. In each graph,
nodes represent amino acids, and there is an edge if they are less than six Angstroms apart. Graphs
are labeled according to whether they are enzymes or not.

NCI1 (Shervashidze et al., 2011) consists of graph representations of 4,110 chemical compounds
screened for activity against non-small cell lung cancer and ovarian cancer cell lines, respectively.

9



Published as a conference paper at ICLR 2019

REFERENCES

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems, pp. 1993–2001, 2016.

László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 684–697. ACM, 2016.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal
chemistry, 34(2):786–797, 1991.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pp. 3844–3852, 2016.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Johannes Hachmann, Roberto Olivares-Amaya, Sule Atahan-Evrenk, Carlos Amador-Bedolla,
Roel S Sánchez-Carrera, Aryeh Gold-Parker, Leslie Vogt, Anna M Brockway, and Alán Aspuru-
Guzik. The harvard clean energy project: large-scale computational screening and design of
organic photovoltaics on the world community grid. The Journal of Physical Chemistry Letters,
2(17):2241–2251, 2011.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

David Haussler. Convolution kernels on discrete structures. Technical report, Technical report,
Department of Computer Science, University of California at Santa Cruz, 1999.

Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The predictive toxicology
challenge 2000–2001. Bioinformatics, 17(1):107–108, 2001.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):
595–608, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels and
applications to graph classification. In Advances in Neural Information Processing Systems, pp.
1623–1631, 2016.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Yong Lin, Linyuan Lu, and Shing-Tung Yau. Ricci curvature of graphs. Tohoku Mathematical
Journal, Second Series, 63(4):605–627, 2011.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014–2023, 2016.

Yuliia Orlova, Morteza Alamgir, and Ulrike von Luxburg. Graph kernel benchmark data sets are
trivial! FEAST 2015: ICML Workshop on Features and Structures.

10



Published as a conference paper at ICLR 2019

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pp. 1177–1184, 2008.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Tiago A Schieber, Laura Carpi, Albert Dı́az-Guilera, Panos M Pardalos, Cristina Masoller, and
Martı́n G Ravetti. Quantification of network structural dissimilarities. Nature communications,
8:13928, 2017.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics, pp.
488–495, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):2539–
2561, 2011.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and fast feature learning on
graphs. In Advances in Neural Information Processing Systems, pp. 88–98, 2017.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure
Leskovec. Hierarchical graph representation learning withdifferentiable pooling. arXiv preprint
arXiv:1806.08804, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of AAAI Conference on Artificial Inteligence,
2018a.

Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, and Arye Nehorai. Retgk: Graph kernels
based on return probabilities of random walks. arXiv preprint arXiv:1809.02670, 2018b.

11


	Introduction
	A simple baseline for graph classification
	Our model
	Relation to graph neural networks 

	Experimental Results
	Conclusion and Discussion
	Related Work
	Graph Kernels
	Graph Neural Network
	Baseline method

	Details of LDP
	Variants and limitations of baseline: 
	Datasets description
	Non-attributed graph datasets
	Graphs with discrete attributes


