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ABSTRACT

We explore the generalization of scattering transforms from traditional signals to
graph data, analogous to the generalization of ConvNets in geometric deep learning,
and the utility of extracted graph features in graph data analysis. In particular, we
focus on the capacity of these features to retain informative variability and relations
in the data (e.g., between individual graphs, or in aggregate). We demonstrate the
application of our geometric scattering features in graph classification of social
network data, and in data exploration of biochemistry data.

1 INTRODUCTION

Over the past decade, Convolutional Neural Networks (CNNs) have achieved great success in
computer vision, where the utilization of 2D convolutions enable network designs that learn cascades
of convolutional filters. Beyond their performances when applied to specific tasks, pretrained ConvNet
layers have been explored as image feature extractors by freezing the first few pretrained convolutional
layers and then retraining only the last few layers for specific datasets or applications (e.g., Yosinski
et al., 2014; Oquab et al., 2014). Such transfer learning approaches provide evidence that suitably
constructed deep filter banks should be able to extract task-agnostic semantic information from
structured data, and in some sense mimic the operation of human visual and auditory cortices, thus
supporting the neural terminology in deep learning.

An alternative approach towards such universal feature extraction was presented in Mallat (2012),
where a deep filter bank, known as the scattering transform, is designed, rather than trained, based
on predetermined families of distruptive patterns that should be eliminated to extract informative
representations. The scattering transform is constructed as a cascade of linear wavelet transforms
and nonlinear complex modulus operations that provides features with guaranteed invariance to a
predetermined Lie group of operations such as rotations, translations, or scaling. Further, it also
provides Lipschitz stability to small diffeomorphisms of the inputted signal. Recently several attempts
have been made to generalize the scattering transform to graphs (Zou & Lerman, 2018; Gama et al.,
2018) and manifolds (Perlmutter et al., 2018), which we will generally term “geometric scattering.”
While these works mostly focus on following the footsteps of Mallat (2012) in establishing the
stability of their respective constructions to deformations of input signals or graphs, here we further
explore the notion of geometric scattering features by considering the complimentary question of how
much information is retained by them, since stability alone does not ensure useful features in practice
(e.g., a constant all-zero map would be stable to any deformation, but would clearly be useless).
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In this paper, we focus on empirical results on several data analysis tasks, and on two commonly
used graph data types. Our results in Sec. 3.1 show that on social network data, geometric scattering
features enable classic RBF-kernel SVM to match, if not outperform, leading graph kernel methods
as well as most geometric deep learning ones. These experiments are augmented by additional results
in Sec. 3.2 that show the geometric scattering SVM classification rate degrades only slightly when
trained on far fewer graphs than is traditionally used in graph classification tasks. On biochemistry
data, where graphs represent molecular structures of compounds (e.g., Enzymes or proteins), we show
in Sec. 3.2 that scattering features enable significant dimensionality reduction. Finally, to establish
their descriptive qualities, in Sec. 3.3 we use geometric scattering features extracted from enzyme
data (Borgwardt et al., 2005a) to infer emergent patterns of enzyme commission (EC) exchange
preferences in enzyme evolution, validated with established knowledge from Cuesta et al. (2015).

2 GEOMETRIC SCATTERING

Let G = (V,E,W ) be a weighted graph, consisting of n vertices V = {v1, . . . , vn}, edges E ⊆
{(v`, vm) : 1 ≤ `,m ≤ n}, and weights W = {w(v`, vm) > 0 : (v`, vm) ∈ E}. Note that
unweighted graphs are considered as a special case, by setting w(v`, vm) = 1 for each (v`, vm) ∈ E.
Define the n×n (weighted) adjacency matrix AG = A of G by A(v`, vm) = w(v`, vm) if (v`, vm) ∈
E and zero otherwise, where we use the notation A(v`, vm) to denote the (`,m) entry of the matrix
A so as to emphasize the correspondence with the vertices in the graph and to reserve sub-indices for
enumerating objects. Define the (weighted) degree of vertex v` as deg(v`) =

∑
m A(v`, vm) and

the corresponding diagonal n× n degree matrix D given by D(v`, v`) = deg(v`), D(v`, vm) = 0,
` 6= m. Define the n× n lazy random walk matrix as P = 1

2

(
I + AD−1

)
.

The operator P can be considered as a low pass operator. Indeed, if x : V → R is a signal
defined on G, then Px will retain the low frequencies of x as defined by the eigenvalues of the
(normalized) graph Laplacian of G. High frequency responses of x can be recovered in multiple
different fashions, but we utilize multiscale wavelet transforms that group the non-zero frequencies
of G into approximately dyadic bands. Following Coifman & Maggioni (2006), define the n × n
wavelet matrix at the scale 2j as

Ψ0 = I−P , Ψj = P2j−1

−P2j = P2j−1

(I−P2j−1

) , j ≥ 1 . (1)

To compare and classify multiple graphs, we utilize signals xG = x that can be defined on any graph
G, e.g., x(v`) = deg(v`). The graph wavelet transform of x, Wx = {P2J x , Ψjx : 1 ≤ j ≤ J},
is a complete representation of x. However, it is not invariant to index permutations of the vertices.
Invariant graph features can be obtained via summation operators; the simplest of these computes
the sum of the responses of the signal x. For example, the unnormalized qth moments of x yield the
following “zero” order scattering moments:

Sx(q) =

n∑
`=1

x(v`)
q, 1 ≤ q ≤ Q . (2)

We can also replace (2) with normalized (i.e., standardized) moments of x, in which case we store its
mean (q = 1), variance (q = 2), skew (q = 3), kurtosis (q = 4), and so on.

The invariants Sx(q) do not capture the full variability of x and hence the graph G upon which the
signal x is defined. We thus complement these moments with summary statistics derived from the
absolute values of the high frequency wavelet coefficients of x, which will lead naturally to the graph
ConvNet structure of the geometric scattering transform:

Sx(j, q) =

n∑
`=1

|Ψjx(v`)|q, 1 ≤ j ≤ J, 1 ≤ q ≤ Q . (3)

First order geometric scattering moments can be augmented with second order geometric scattering
moments by iterating the graph wavelet and absolute value transforms. These moments are defined
as:

Sx(j, j′, q) =

n∑
`=1

|Ψj′ |Ψjx(v`)||q,
1 ≤ j < j′ ≤ J
1 ≤ q ≤ Q ,

(4)
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The collection of graph scattering moments Sx = {Sx(q), Sx(j, q), Sx(j, j′, q)} (illustrated in
Fig. 1(a)) provides a rich set of multiscale invariants of the graph G. Similar constructions were
introduced in Zou & Lerman (2018) and Gama et al. (2018), which studied the theoretical stability
of the representation with respect to certain metrics between graphs. In this paper we observe that
geometric scattering features can be used in supervised settings as input to graph classification or
regression models, or in unsupervised settings to embed graphs into a Euclidean feature space for
further exploration, as demonstrated in Sec. 3.

x
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(a) Representative zeroth-, first-, and second-order
cascades of the geometric scattering transform for an
input graph signal x.

G = (V,E,W )
x : V → R

Adjacency matrix
:

A
(vi

, vj
)

Signal vector:
x(vi )

Diffusion wavelets:

Ψj = P2j−1
− P2j

P = 1
2
(I + AD−1)

Ψj

Scattering
(a)

x 7→ Sx

Traditional
Euclidean
algorithms

(e.g., SVM/PCA)

(b) Architecture for using geometric scattering of
graph G and signal x in graph data analysis, as demon-
strated in Sec. 3.

Figure 1: Illustration of (a) the proposed scattering feature extraction (see eqs. 2, 3, and 4), and (b) its
application for graph data analysis.

3 APPLICATION & RESULTS

3.1 GRAPH CLASSIFICATION ON SOCIAL NETWORKS

As a first application of geometric scattering, we apply it to graph classification of social network
data taken from Yanardag & Vishwanathan (2015). In particular, this work introduced six social
network data sets extracted from scientific collaborations (COLLAB), movie collaborations (IMDB-B
& IMDB-M), and Reddit discussion threads (REDDIT-B, REDDIT-5K, REDDIT-12K).

These social network datasets contain graph structures but no associated graph signals. Therefore we
compute the eccentricity (for connected graphs) and clustering coefficient of each vertex, and use
these as input signals to the geometric scattering transform. We then use the normalized geometric
scattering features as inputs to the SVM classifier with an RBF kernel for classification; see also
Figure 1(b). Utilizing 10-fold cross validation, we compare our results to 10 prominent methods that
report results for most, if not all, of the considered datasets in Table 1.

Table 1: Comparison of the proposed GS-SVM classifier with leading graph kernel and deep learning
methods on social graph datasets.

COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-5K REDDIT-12K
WL (Shervashidze et al., 2011) 77.82± 1.45 71.60± 5.16 N/A 78.52± 2.01 50.77± 2.02 34.57± 1.32 G

raph
kernel

︷︸︸︷

Graphlet (Shervashidze et al., 2009) 73.42± 2.43 65.40± 5.95 N/A 77.26± 2.34 39.75± 1.36 25.98± 1.29
WL-OA (Kriege et al., 2016) 80.70± 0.10 N/A N/A 89.30± 0.30 N/A N/A

DGK (Yanardag & Vishwanathan, 2015) 73.00± 0.20 66.90± 0.50 44.50± 0.50 78.00± 0.30 41.20± 0.10 32.20± 0.10
DGCNN (Zhang et al., 2018) 73.76± 0.49 70.03± 0.86 47.83± 0.85 N/A 48.70± 4.54 N/A

D
eep

learning
︷

︸︸
︷

2D CNN (Tixier et al., 2017) 71.33± 1.96 70.40± 3.85 N/A 89.12± 1.70 52.21± 2.44 48.13± 1.47
PSCN (Niepert et al., 2016, with k = 10) 72.60± 2.15 71.00± 2.29 45.23± 2.84 86.30± 1.58 49.10± 0.70 41.32± 0.42

GCAPS-CNN (Verma & Zhang, 2018) 77.71± 2.51 71.69± 3.40 48.50± 4.10 87.61± 2.51 50.10± 1.72 N/A
S2S-P2P-NN (Taheri et al., 2018) 81.75± 0.80 73.80± 0.70 51.19± 0.50 86.50± 0.80 52.28± 0.50 42.47± 0.10

GIN-0 (MLP-SUM) (Xu et al., 2019) 80.20± 1.90 75.10± 5.10 52.30± 2.80 92.40± 2.50 57.50± 1.50 N/A
GS-SVM 79.94± 1.61 71.20± 3.25 48.73± 2.32 89.65± 1.94 53.33± 1.37 45.23± 1.25

Examining Table 1 one can see that the geometric scattering SVM (GS-SVM) classifier generally
matches the performance of, and sometimes outperforms, all but the two most recent methods, i.e.,
S2S-N2N-PP (Taheri et al., 2018) and GIN (Xu et al., 2019). With regards to these two approaches,
the GS-SVM outperforms S2S-N2N-PP (Taheri et al., 2018) on 3/6 datasets. Finally, while GIN (Xu
et al., 2019) outperforms geometric scattering on 5/6 datasets, the results on COLLAB and IMDB-B
are not statistically significant, and on the REDDIT datasets the geometric scattering approach trails
only GIN (Xu et al., 2019). We thus conclude that the geometric scattering transform yields a rich set
of invariant statistical moments, which have nearly the same capacity as the current state of the art in
graph neural networks.
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3.2 CLASSIFICATION WITH LIMITED TRAINING-DATA AND DIMENSIONALITY REDUCTION

We performed graph classification under four training/validation/test splits: 80%/10%/10%,
70%/10%/20%, 40%/10%/50% and 20%/10%/70%. Following Sec. 3.1, we discuss the classi-
fication accuracy on six social network datasets under these splits. When the training data is reduced
from 80% to 70%, the classification accuracy in fact increased by 0.047%, which shows the GS-SVM
classification accuracy is not affected by the decrease in training size. Further reducing the training
size to 50% results in an average decrease of classification accuracy of 1.40% while from 90% to
20% causes an average decrease of 3.00%. Fig. 2(a) gives a more nuanced statistical description of
these results.

Relatedly, we also considered the viability of scattering-based embedding for dimensionality reduction
of graph data. As a representative example, we consider here the ENZYMES dataset introduced in
Borgwardt et al. (2005b), which contains 600 enzymes evenly split into six enzyme classes (i.e., 100
enzymes from each class).

We applied PCA to geometric scattering features extracted from input enzyme graphs
in the data, while choosing the number of principal components to capture 99%,
90%, 80% and 50% explained variance. For each of these thresholds, we com-
puted the mean classification accuracy (with ten-fold cross validation) of SVM applied
to the GS-PCA low dimensional space, as well as the dimensionality of this space.

(a) (b)

Figure 2: (a) Box plot showing the drop
in SVM classification accuracy over social
graph datasets when reducing training set size
(horizontal axis marks portion of data used
for testing); (b) Relation between explained
variance, SVM classification accuracy, and
PCA dimensions over scattering features in
ENZYMES dataset.

The relation between dimensionality, explained vari-
ance, and SVM accuracy is shown in Fig. 2(b), where
we can observe that indeed geometric scattering com-
bined with PCA enables significant dimensionality
reduction (e.g., to R16 with 90% exp. variance) with
only a small impact on classification accuracy.

3.3 DATA EXPLORATION:
ENZYME CLASS EXCHANGE PREFERENCES

In this section, we focus our discussion on the EN-
ZYMES dataset described in the previous section.
Here, geometric scattering features can be consid-
ered as providing “signature” vectors for individual
enzymes, which can be used to explore interactions
between the six top level enzyme classes, labelled by
their Enzyme Commission (EC) numbers (Borgwardt
et al., 2005a). In order to emphasize the properties of
scattering-based feature extraction, rather than down-
stream processing, we mostly limit our analysis of
the scattering feature space to linear operations such
as principal component analysis (PCA).

To explore the scattering feature space, and the richness of information captured by it, we use it to
infer relations between EC classes. First, for each enzyme e, with scattering feature vector be (i.e.,
with Sx for all vertex features x), we compute its distance from class EC-j, with PCA subspace
Cj , as the projection distance: dist(e,EC-j) = ‖be − projSjbe‖. Then, for each enzyme class
EC-i, we compute the mean distance of enzymes in it from the subspace of each EC-j class as
D(i, j) = mean{dist(e,EC-j) : e ∈ EC-i}.
These distances are summarized in the supplement, as well as the proportion of points from each
class that have their true EC as their nearest (or second nearest) subspace in the scattering feature
space. In general, 48% of enzymes select their true EC as the nearest subspace (with additional
19% as second nearest), but these proportions vary between individual EC classes. Finally, we use
these scattering-based distances to infer EC exchange preferences during enzyme evolution, which
are presented in Fig. 3 and validated with respect to established preferences observed and reported
in Cuesta et al. (2015). The details of calculation of EC exchange preferences can be found in the
supplement.
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We note that the result there is observed independently from the ENZYMES dataset.
Our results in Fig. 3 demonstrate that scattering features are sufficiently rich to
capture relations between enzyme classes, and indicate that geometric scattering has
the capacity to uncover descriptive and exploratory insights in graph data analysis.

(a) Observed (b) Inferred

Figure 3: Comparison of EC exchange pref-
erences in enzyme evolution: (a) observed
in Cuesta et al. (2015), and (b) inferred from
scattering features. Our inference (b) mainly
recovers (a).

3.4 ABLATION STUDY

To fully understand the power of our geometric scat-
tering coefficients, especially to demonstrate the use-
fulness of those generated from second order scatter-
ing moments defined in equation 4, we perform an
ablation study using the REDDIT-B and ENZYME
datasets as representative examples. We used normal-
ized features in this section to be consistent with the
results of previous sections. We conducted classifica-
tion tasks with only zero order features and zero order
+ first order features. Our results show that indeed
scattering coefficients from higher order moments
contribute to the capacity of the geometric scatter-
ing SVM classifier. The classification accuracy only
using zero order features on the ENZYME dataset
drops sharply to 34.33%. Adding first order features
increases the accuracy to 54.17%, which is still lower

than 56.83% using zero order, first order and second order features. For the REDDIT-B dataset, the
classification accuracy dropped to 85.75% with only zero order features, and 87.30% with zero order
+ first order features, compared to 89.65% using all three orders of features.

Table 2: Ablation study on REDDIT-B and ENZYME datasets using only zero order and zero order +
first order features.

zero order only zero order + first order
REDDIT-B 85.75± 2.80 87.30± 1.76
ENZYME 34.33± 5.64 54.17± 4.73

4 CONCLUSION

We presented the geometric scattering transform as a deep filter bank for feature extraction on graphs,
which generalizes the Euclidean scattering transform. Our evaluation results on graph classification
and data exploration show the potential of the produced scattering features to serve as universal
representations of graphs. They raise the possibility of embedding entire graphs in Euclidean space
and computing meaningful distances between graphs, which can be used for both supervised and
unsupervised learning.
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Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65
(10):1331–1398, October 2012.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International conference on machine learning, pp. 2014–2023, 2016.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1717–1724, 2014.

Michael Perlmutter, Guy Wolf, and Matthew Hirn. Geometric scattering on manifolds. In NeurIPS
Workshop on Integration of Deep Learning Theories, pp. arXiv:1812.06968, 2018.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In David van Dyk and Max Welling (eds.),
Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, volume 5
of Proceedings of Machine Learning Research, pp. 488–495, Hilton Clearwater Beach Resort,
Clearwater Beach, Florida USA, 2009. PMLR.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 12(Sep):
2539–2561, 2011.

Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. Learning graph representations with recurrent
neural network autoencoders. In KDD Deep Learning Day, 2018.

Antoine Jean-Pierre Tixier, Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgian-
nis. Classifying graphs as images with convolutional neural networks. arXiv preprint, pp.
arXiv:1708.02218, 2017.

Saurabh Verma and Zhi-Li Zhang. Graph capsule convolutional neural networks. arXiv preprint, pp.
arXiv:1805.08090, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

6



ICLR 2019 Representation Learning on Graphs and Manifolds Workshop

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in Neural Information Processing Systems 27, pp. 3320–3328,
2014.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI Conference on Artificial Intelligence, pp. 4438–4445,
2018.

Dongmian Zou and Gilad Lerman. Graph convolutional neural networks via scattering.
arXiv:1804:00099, 2018.

7


	Introduction
	Geometric scattering
	Application & Results
	Graph classification on social networks
	Classification with limited training-data and dimensionality reduction
	Data exploration: Enzyme class exchange preferences
	Ablation Study

	Conclusion
	Acknowledgments

