Published as a workshop paper at ICLR 2019

DIFFERENTIABLE PHYSICS-INFORMED
GRAPH NETWORKS

Sungyong Seo & Yan Liu

University of Southern California
{sungyons, yanliu.cs}@usc.edu

ABSTRACT

While physics conveys knowledge of nature built from an interplay between obser-
vations and theory, it has been considered less importantly in deep neural networks.
Especially, there are few works leveraging physics behaviors when the knowl-
edge is given less explicitly. In this work, we propose a novel architecture called
Differentiable Physics-informed Graph Networks (DPGN) to incorporate implicit
physics knowledge which is given from domain experts by informing it in latent
space. Using the concept of DPGN, we demonstrate that climate prediction tasks
are significantly improved.

1 INTRODUCTION

Modeling natural phenomena in the real-world, such as climate, traffic, molecule, and so on, is
extremely challenging but important. Deep learning has achieved significant successes in prediction
performance by learning latent representations from data-rich applications such as speech recogni-
tion (Hinton et al., [2012), text understanding (Wu et al.,|2016), and image recognition (Krizhevsky
et al.| 2012)). While the accuracy and efficiency of data-driven deep learning models can be improved
with ad-hoc architectural changes for specific tasks, we are confronted with many challenging learning
scenarios in modeling natural phenomenon, where a limited number of labeled examples are available
or there is much noise in the data.

Physics is one of the fundamental pillars describing how the real-world behaves. It is imperative
that physics-informed learning models are powerful solutions to modeling natural phenomena.
Incorporating domain knowledge has several benefits: first, it helps an optimized solution to be more
stable and to prevent overfitting; second, it provides theoretical guidance with which an effective
model is supposed to follow and thus, helps training with less data; lastly, since a model is driven by
the desired knowledge, it would be more robust to unseen data, and thus it is easier to be extended to
applications with changing distributions.

Meanwhile, there exist a series of challenges when we incorporate physics principles into machine
learning models. First, a model needs to be able to properly handle the spatial and temporal constraints.
Second, the model should capture relations between objects, such as image patches (Santoro et al.,
2017) or rigid bodies (Battaglia et al.| 2016; (Chang et al.l 2017). Third, the learning modules should
be common for all objects because physical phenomena apply to all objects. Finally, the model should
be flexible to extract unknown patterns instead of being strictly constrained to physics knowledge.

In this paper, we address the problem of modeling dynamical systems based on graph-based neural
networks by incorporating useful knowledge described as differentiable physics equations. We
propose a generic architecture, differentiable physics-informed graph networks (DPGN), which can
leverage explicitly required physics and learn implicit patterns from data. The proposed model
properly handles spatially located objects and their relations as vertices and edges in a graph, and
temporal dependencies are learned by recurrent computations.

Our contributions of this work are summarized as follows:

e We develop a novel physics-informed learning architecture, DPGN, which incorporates
differentiable physics equations with a graph network framework.

o We investigate the effectiveness of DPGN for climate modeling in terms of prediction.

Published as a workshop paper at ICLR 2019

T e ~ 25

. L ® / X

=~ S - . 'Y] [} o= X

-*$-,-«-- . N/

N - M\ V4
(a) Scalar field (b) Vector field (c) Vertex function (d) Edge function

Figure 1: Scalar/vector fields on Euclidean space and vertex/edge functions on a graph.

2 CALCULUS ON GRAPHS

Preliminary Given a graph G = (V,£) where V and € are a set of vertices V = {1,...,n} and
edges £ C (‘27), respectively, two types of real functions can be defined on the vertices, f : V — R,
and edges, F' : £ — R, of the graph. It is also possible to define multiple functions on the vertices
or edges as multiple feature maps of a pixel in CNNs. Since f and F' can be viewed as scalar fields
and tangent vector fields in differential geometry (Figure[I)), the corresponding discrete operators on
graphs can be defined as follow |Lim| (2015).

Gradient on graphs The gradient on a graph is the linear operator defined by
V:LAV) = L*(€) (V)i =(f; = fi) if{i,j} € € and O otherwise.

where L2(V) and L?(€) denote Hilbert spaces of vertex functions and edge functions, respectively,
thus f € L?(V) and F € L%(£). As the gradient in Euclidean space measures the rate and direction
of change in a scalar field, the gradient on a graph computes differences of the values between two
adjacent vertices and the differences are defined along the directions of the corresponding edges.

Divergence on graphs The divergence in Euclidean space maps vector fields to scalar fields.
Similarly, the divergence on a graph is the linear operator defined by

div : L2(€) — L%(V) (divF); = Y wyF; Viey
J:(i,5)€E
where w;; is a weight on the edge (3, 7). It denotes a weighted sum of incident edge functions to a
vertex ¢, which is interpreted as the netflow at a vertex .

Laplacian on graphs Laplacian (A = V?) in Euclidean space measures the difference between
the values of the scalar field with its average on infinitesimal balls. Similarly, the graph Laplacian is
defined as

A L2(V) = L2(V) (Af)i= Y wy(fi—f;) Viey
J:(i.j)ee
The graph Laplacian can be represented as a matrix form, L = D — W where D = diag(}_ it w;j)

is a degree matrix and W denotes a weighted adjacency matrix. Note that L = A = —divV and the
minus sign is required to make L positive semi-definite.

Curl on graphs The curl on a graph is a more complicated concept defined on 3-cliques,
the set of triangles 7 C (%) where {i,j,k} € T if and only if {i,5},{i,k},{j,k} € €.
curl : L2(&) — L3(T) (curl F)(i,4,k) = F(i,5) + F(j, k) + F(k,1)
curl* : L*(T) — L*(£) (curl*F)(i,5) = >, “2%5F(i,5,k) if {i,j,k} € T and 0 otherwise.
where F(-) € L*(T) is a 3-clique function and w; j, is a weight defined on the clique {4, j, k}. curl*
is an expression for the adjoint of the curl operator. Note that some vector calculus properties (e.g.,
solenoidal or irrotational) can be seamlessly verified (div curl* F' = 0 or curl V f = 0).

3 DIFFERENTIABLE PHYSICS-INFORMED GRAPH NETWORKS

While differential operators in Section [2] can be easily implemented in a GN module, it is hardly
practical for modeling complicated real-world problems with the operators solely because it is only

Published as a workshop paper at ICLR 2019

!

Phy5|c5 equation J Supervised Loss

Figure 2: Recurrent architecture to incorporate physics equation on GN. The blue blocks have
learnable parameters and the orange blocks are objective functions. The middle core block can be
repeated as many as the required time steps (7).

—mrﬁ @ +E-¢ ¢
|

possible when all physics equations governing the observed phenomena are explicitly known. For
example, although we understand that there are a number of physics equations involved in climate
observations, it is almost infeasible to include all required equations for modeling the observations.
Thus, it is necessary to utilize the learnable parameters in GN to extract latent representations in the
data. Then, some known physics knowledge will be incorporated with the latent representations.

Forward/Recurrent computation Figure [2| provides how the desired physics knowledge is in-
tegrated with the learnable GN. Given a graph G = {v, e, ¢, u}, it is fed into an encoder which
transforms a set of attributes of nodes (v), edges (e), 3-cliques (c), and a whole graph (u) into latent
spaces. The encoded graph H = {9, &, &, u} is repeatedly updated within the core block as many
as the required time steps T'. For each step, H is updated to H' which denotes the next state of the
encoded graph. Finally, the sequentially updated attributes are re-transformed to the original spaces
by a decoder.

v, €, ¢,u = Encoder(v, e, ¢, u) (1)
H' = GN(H) (2)
v’ e, ¢, u' = Decoder(v', €', ¢, a') 3)

Objective functions There are two types of objective function in this architecture. First, we define
physics-informed constraints (Equation f)) between the previous and updated states based on the
known knowledge.

= fphy(HzaHsz" ’ £+M—1) “)
PhU Z‘Cphy (5)

where ﬁ;hy is the physics-informed quantity from the input at time step % to the predicted M — 1 steps.
For example, if we are aware that the observations should have a diffusive property, the diffusion
equation can be used as the physics-informed constraint.

Fory(H,H) = |l — v — aV2o|?

Secondly, the supervised loss function between the predicted graph, G’, and the target graph, G’. This
loss function is constructed based on the task, such as the cross-entropy or the mean squared error
(MSE). Finally, the total objective function is a sum of the two constraints:

L= ﬁsup +)\ﬁphy (6)

where A controls the importance of the physics term.

4 EXPERIMENT

4.1 CLIMATE DATA

We found that the simulated climate observations over 16 days around the Southern California
region Zhang et al.| (2018)) by using the Weather Research and Forecasting (WRF) model Skamarock
et al.|(2008). We provide the details on dataset in Appendix.

Published as a workshop paper at ICLR 2019

Table 1: Prediction error (MSEs)

Model LA area SD area LA area SD area
(one-step) (one-step) (multistep) (multistep)

MLP 0.7930 £0.2327 1.0645 £0.2634 - -

LSTM 0.7378 £0.0514 0.9213 £0.1049 1.4943 £0.0970 1.0873 £0.0664
GN-only 0.6035 £0.0832 0.7007 £0.0848 1.3415 £0.1195 1.0422 4+0.0673
GN-skip 0.56546 £0.1015 0.6543 £0.1195 1.0257 £0.1912 0.9872 £0.2425

DPGN 0.4435 +£0.0378 0.5149 +0.0831 0.8677 £0.1033 0.6714 +0.1106

4.2 DPGN ARCHITECTURE

In the GN block, the node/edge/graph features are updated by the GN algorithm in |Sanchez-Gonzalez
et al. (2018). The latent graph states, and ', indicate the hidden states of the current and next
observations. For the physics constraint, we informed the diffusion equation, which describes the
behavior of the continuous physical quantities resulting from the random movement. As the most
of the climate observations are varying continuously, the diffusion equation is one of the equations
that should be considered for modeling. The following objective function is the total loss function of
DPGN with the diffusion equation.

T T
EZZHQZ’_yiH2+)\ZHﬁi_"~)z‘—1 —aV?0;_4|? @)
i=1 i=1
where y is a vector of the target observations and « adjusts the diffusivity of the latent physics
quantities. Note that v is the latent node representation of the input v and v;.;~¢ are the updated
latent representations in the GN block.

4.3 ANALYSIS AND RESULTS

We evaluated our model by performing the one-step and multistep (1" = 10) prediction tasks on the
two different area with a mean square error metric. We explored several baselines, MLP which is
only able to do one-step prediction, LSTM, and GN-only that ignores the physics constraint in DPGN.
Moreover, we compared GN-skip which connects between H and H' with the skip-connection|He
et al.|(2016) without the physics constraint.

Table|1|shows the prediction error of the baselines and DPGN on different areas. As expected, MLP
and LSTM show the similar performance at the one-step prediction because the recurrent module in
LSTM is practically a feed forward module in the setting. The results from the models leveraging the
given graph structure outperform MLP and LSTM. It means that knowing neighboring information is
significantly helpful to infer its own state. Among the graph-based models, DPGN provides the least
MSE:s. It proves that it is valid reasoning to incorporate the partially given physics rule, such as the
continuously varying property, with the latent representation learning.

To evaluate the effectiveness of the state-wise regularization more carefully, we conducted the
multistep prediction task. Commonly, the models having a recurrent module are able to predict a
few more steps reasonably. However, there are a couple of things we should pay attention. First,
the results imply that utilizing the neighboring information is important because GN-only model
shows similar or better MSEs compared to LSTM for the multistep tasks, even though it has a simple
recurrent module that is not as good as that of LSTM. Second, we found that the diffusion equation
in DPGN gives the stable state transition and the property provides slowly varying latent states which
are desired particularly for the climate forecasting.

5 CONCLUSION

In this work, we introduce a new architecture based on graph networks to incorporate prior knowledge
given as a form of PDEs over time and space. We first provide how the graph networks framework
generalize the differential operators in a graph. Then, we present a regularization which is a function
of consecutive latent states and spatial differences of the states to inject a given physics equation,
and examine if the spatiotemporal constraint is valid across a range of experiments on the climate
observations.

Published as a workshop paper at ICLR 2019

REFERENCES

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502-4510, 2016.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. International Conference on Learning
Representations, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, 29(6):82-97, 2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Lek-Heng Lim. Hodge laplacians on graphs. arXiv preprint arXiv:1507.05379, 2015.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In Proceedings of the 35th International Conference on Machine Learning, 2018.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In
Advances in neural information processing systems, pp. 4967-4976, 2017.

W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, M. Barker, K. G. Duda, X. Y Huang, W. Wang,
and J. G. Powers. A description of the advanced research WRF version 3. Technical report,
National Center for Atmospheric Research, 2008.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

Jiachen Zhang, Arash Mohegh, Yun Li, Ronnen Levinson, and George Ban-Weiss. Systematic
comparison of the influence of cool wall versus cool roof adoption on urban climate in the los
angeles basin. Environmental science & technology, 52(19):11188-11197, 2018.

Published as a workshop paper at ICLR 2019

A APPENDIX

A.1 CLIMATE DATA

We found that the simulated climate observations over 16 days around the Southern California

region (2018) by using the Weather Research and Forecasting (WRF) model
(2008). Instead of using all patches at once, we sampled two subsets of the patches, Los Angeles

and San Diego areas (Figure [3)), for training DPGN. To build a graph, we considered each patch as a
vertex (similar to|Santoro et al.| (2017)) and connect a pair of adjacent pixels to define an edge.

In this dataset, the region (Latitude: 32.22 to 35.14, Longitude: -119.59 to -116.29) is divided into
18,189 grid patches and the observations are recorded hourly.

LA area

SD area
Figure 3: Southern CA region

Instead of using all patches at once, we sampled two subsets of the patches, Los Angeles and San
Diego areas (Figure[3)), for training DPGN. To build a graph, we considered each patch as a vertex
(similar to|Santoro et al.[(2017)) and connect a pair of adjacent pixels to define an edge.

The vertex attributes consist of 10 climate observations, Air temperature, Albedo, Precipitation, Soil
moisture, Relative humidity, Specific humidity, Surface pressure, Planetary boundary layer height,
and Wind vector (2 directions). Although the edge attributes are not given, we could specify the type
of each edge by using the type of connected patches. There are 13 different land-usage types and
each type summarizes how the corresponding land is used. For example, some patches are classified
as commercial/industrial land (e.g., Downtown LA) but some other patches are grassland. Based on
the type of connected patches, we assigned different embedding vectors to edges.

Here we provide the details for the climate observations and basic information.

Published as a workshop paper at ICLR 2019

Table 2: Description of climate data

Feature Description
Timestamp Every 60 minute
T2 (3D) Near-surface (2 meter) air temperature (unit: K) (time varying)
XLAT (3D) Latitude (unit: degree north) (time invariant)
XLONG (3D) Longitude (unit: degree east) (time invariant)
ALBEDO (3D) Albedo (unit: -) (time varying)
FRC_URB2D (3D) | Impervious fraction, urban fraction (unit: -) (time invariant)
VEGFRA (3D) Vegetation fraction (unit: -) (time invariant)

LU_INDEX (3D)

U (4D)
V (4D)
RAINNC (3D)
SMOIS (4D)
PBLH (3D)
RH2 (3D)
Q2 (3D)
PSFC (3D)

Land use classification (unit: -) (time invariant)

Paved index: (31: Low-intensity residential, 32: High-intensity residential, 33: Commercial/Industrial)
Wind vector, x-wind component (unit: m * s~1) (west to east vector) (time varying)

Wind vector, y-wind component (unit: m * s~ 1) (south to north vector) (time varying)
Accumulated total grid scale precipitation (unit: mm) (time varying)

Soil moisture (unit: m3m~2) (time varying)

Boundary layer height (unit: m) (time varying)

2-meter relative humidity (unit: -) (time varying)

2-meter specific humidity (units: kgkg~!) (time varying)

surface pressure (units: Pa) (time varying)

Table 3: Description of sub-regions

LA area SD area
of total patches 2400 2499
of sampled patches 280 272
unpaved patches 130 217
paved patches 148 49
unknown patches 2 6
edge attributes 45 42

A.2 MODEL DETAILS

Here we provide additional details for all models we used in the work, including the exact hyper-
parameter and architecture settings. All models were trained using the Adam optimiser, with
exponential decay rate parameters 3; = 0.9, B2 = 0.999, ¢ = 10~8. All experiments were done on

GeForce GTX 1080 Ti.

Published as a workshop paper at ICLR 2019

Table 4: Hyper-parameter of DPGN

hyper-parameter

Edge embedding dim 64
Edge hidden dim 64
Node hidden dim 64
Global hidden dim 64

Learning rate 0.001

Iterations 30,000
A le-5
Diffusion coefficient 0.001

Table 5: Functions in DPGN

hyper-parameter

Node encoder

Edge encoder

Edge update func, ¢°

Node update func, ¢”

Global update func, ¢*

Edge aggregator for v

Edge aggregator for u

Node aggregator for u
Node decoder

MLP [9,64] with ReLU
Embedding matrix

e;; = ¢°(€ij, vi, v, u)

MLP [256,64] with ReLU

v, = ¢¥(v;, €}, €, u)

MLP [256,64] with ReLU

u' = ¢¥(u, € ,v")

MLP [192,64] with ReLU
p°(e;) = Add(e;)
p°(e;) = Avg(e;)
p'(vi) = Avg(v;)

MLP [64,1]

	Introduction
	Calculus on Graphs
	Differentiable Physics-informed Graph Networks
	Experiment
	Climate Data
	DPGN architecture
	Analysis and Results

	Conclusion
	Appendix
	Climate Data
	Model Details

