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ABSTRACT

Graph partitioning is the problem of dividing the nodes of a graph into balanced par-
titions while minimizing the edge cut across the partitions. Due to its combinatorial
nature, many approximate solutions have been developed. We propose GAP, a Gen-
eralizable Approximate Partitioning framework that takes a deep learning approach
to graph partitioning. We define a differentiable loss function that represents the
partitioning objective. Unlike baselines that redo the optimization per graph, GAP
is capable of generalization, allowing us to train models that produce performant
partitions at inference time, even on unseen graphs. Furthermore, because we learn
the representation of the graph while jointly optimizing for the partitioning loss
function, GAP can be easily tuned for a variety of graph structures. We evaluate the
performance of GAP on graphs of varying sizes and structures, including graphs
of widely used machine learning models (e.g., ResNet, VGG, and Inception-V3),
scale-free graphs, and random graphs.

1 INTRODUCTION

Graph partitioning is an important optimization problem with numerous applications in domains
spanning computer vision, VLSI design, biology, social networks, transportation networks, device
placement and more. The objective is to find balanced partitions while minimizing the number of
edge cut. For example, in device placement, the goal is to evenly partition a computational graph and
distribute the partitions across multiple devices (such as CPUs and GPUs), such that the total number
of connections across devices is minimized. This problem is NP-complete, which is formulated as a
discrete optimization problem, and solutions are generally derived using heuristics and approximation
algorithms (Miettinen et al., 2006), (Andersen et al., 2006), (Chung, 2007), (Karypis & Kumar, 1998),
(Karypis et al., 1999), (Karypis & Kumar, 2000), (Van Den Bout & Miller, 1990), (Kawamoto et al.,
2018). Clustering problems with self-balanced k-means and balanced min-cut objectives have been
exhaustively studied (Liu et al., 2017), (Chen et al., 2017), (Chang et al., 2014). One of the most
effective techniques is spectral clustering, which finds node embeddings in the eigenspace of the
graph Laplacian, and then applies k-means clustering to these vectors (Shi & Malik, 2000; Ng et al.,
2002; Von Luxburg, 2007).

In this work, we introduce a learning based approach, GAP, for the continuous relaxation of the
problem. We define a differentiable loss function which captures the objective of partitioning a graph
into disjoint balanced partitions while minimizing the number of edge cut across those partitions. We
train a deep model to optimize for this loss function. The optimization is done in an unsupervised
manner without the need for labeled datasets. Our approach, GAP, does not assume anything about
the graph structure (e.g., sparse vs. dense, or scale-free). Instead, GAP learns and adapts to the graph
structure using graph embedding techniques while optimizing the partitioning loss function. This
representation learning allows our approach to be self-adaptive without the need for us to design
different strategies for different types of graphs.

Our learning based approach is also capable of generalization, meaning that we can train a model
on a set of graphs and then use it at inference time on unseen graphs of varying sizes. In particular,
we show that when GAP is trained on smaller graphs (e.g., 1k nodes), it transfers what it learned to
much larger ones (e.g, 20k nodes). This generalization allows trained GAP models to quickly infer
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partitions on large unseen graphs, whereas baseline methods have to redo the entire optimization for
each new graph.
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Figure 1: Generalizable Approximate graph Partitioning (GAP) (more details in Section 2).

2 GENERALIZABLE APPROXIMATE PARTITIONING

Let G = (V,E) be a graph where V = {vi} and E = {e(vi, vj)|vi ∈ V, vj ∈ V } are the set
of nodes and edges in the graph. Let n be the number of nodes. Normalized cut (Ncut), which
is based on the graph conductance, has been studied by (Shi & Malik, 2000; Zhang & Rohe,
2018), where the cost of a cut is computed as a fraction of the total edge connections to all nodes.
vol(Sk, V ) =

∑
vi∈Sk,vj∈V e(vi, vj) is the total degree of nodes belong to Sk in graph G.

Ncut(S1, S2, . . . Sg) =

g∑
k=1

cut(Sk, S̄k)

vol(Sk, V )
(1)

One way to minimize the normalized cut is based on the eigenvectors of the graph Laplacian which
has been studied in (Shi & Malik, 2000; Zhang & Rohe, 2018). In this paper, we introduce the
Generalizable Approximate Partitioning framework (GAP). As shown in Figure 1, GAP has two main
components: graph embedding module, and graph partitioning module. The GAP model ingests a
graph definition, generates node embeddings that leverage local graph structure, and projects each
embedding into logits that define a probability distribution to minimize the expected normalized
cut (Equation 5). The purpose of the graph embedding module is to learn node embeddings using
the graph structure and node features. Recently, there have been several advances on applying
graph neural networks for node embedding and classification tasks using approaches such as Graph
Convolution Network (Kipf & Welling, 2017) (GCN), GraphSAGE (Hamilton et al., 2017), Neural
Graph Machines (Bui et al., 2017), Graph Attention Networks (Veličković et al., 2018) and other
variants. In this work, we leverage GCN and GraphSAGE to learn graph representations across a
variety of graphs, which helps with generalization. The second module in our GAP framework is
responsible for partitioning the graph, taking in node embeddings and generating the probability that
each node belongs to partitions S1, S2, ..., Sg (Y in Figure 1). This module is a fully connected layer
followed by softmax, trained to minimize GAP loss function introduced in Equation 5.

2.1 GAP LOSS FUNCTION

As shown in Figure 1 GAP returns Y ∈ Rn×g where Yik represents the probability that node vi
belongs to partition Sk. The probability that node vj does not belong to partition Sk would be 1−Yjk.
We formulate E[cut(Sk, S̄k)] by Equation 2, where N (vi) is the set of nodes adjacent to vi.

E[cut(Sk, S̄k)] =
∑

vi∈Sk
vj∈N (vi)

g∑
z=1

Yiz(1− Yjz) (2)

Since the set of adjacent nodes for a given node can be retrieved from the adjacency matrix of graph
A, we can rewrite Equation 2 as follows:

E[cut(Sk, S̄k)] =
∑

reduce-sum

Y:,k(1− Y:,k)ᵀ �A (3)
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From Equation 1, vol(Sk, V ) is the sum over the degree of all nodes that belong to Sk. Let D be a
column vector of size n where Di is the degree of the node vi ∈ V . Given Y , we can calculate the
E[vol(Sk, V )] as follows, where Γ is a vector in Rg , and g is the number of partitions.

Γ = Y ᵀD, where E[vol(Sk, V )] = Γk (4)

With E[cut(Sk, S̄k)] and E[vol(Sk, V )] from Equations 3 and 4, we can calculate the expected
normalized cut in Equation 1 as follows (� is element-wise division):

L = E[Ncut(S1, S2, . . . Sg)] =
∑

reduce-sum

(Y � Γ)(1− Y )ᵀ �A (5)

3 EXPERIMENTAL RESULTS

The main goals of our experiments are to (a) evaluate the performance of the GAP framework against
hMETIS (Karypis & Kumar, 2000), a widely used partitioner that uses multilevel partitioning and (b)
evaluate the generalizability of GAP over unseen graphs and provide insights on how the structural
similarities between train and test graphs affect the generalization performance.

3.1 SETUP

We conducted experiments on real and synthetic graphs. Specifically, we use five widely used
TensorFlow graphs, i.e. ResNet, Inception-v3, AlexNet, MNIST-conv, and MNIST-conv.
• ResNet (He et al., 2016) is a deep convolutional network with residual connections. The TensorFlow

implementation of ResNet v1 50 with 50 layers contains 20, 586 operations.

• Inception-v3 (Szegedy et al., 2017) consists of multiple blocks, each composed of several convolu-
tional and pooling layers. The TensorFlow graph of this model contains 27, 114 operations.

• AlexNet (Krizhevsky et al., 2012) consists of 5 convolutional layers, some of which are followed
by max-pooling layers, and 3 fully-connected layers with a final softmax. The TensorFlow graph
of this model has 798 operations.

• MNIST-conv has 3 convolutional layers for the MNIST classification task. The TensorFlow graph
of this model contains 414 operations.

• VGG (Simonyan & Zisserman, 2014) contains 16 convolutional layers. The TensorFlow graph of
VGG contains 1, 325 operations.

We also generate Random and Scale-free graphs as synthetic datasets to show the effectiveness
of GAP on graphs with different structures. We generate random graphs using the Erdös–Rényi
model (Erdos & Rényi, 1960), where the probability of having an edge between any two nodes is 0.1.
A scale-free network is a network whose degree distribution follows a power law (Bollobás et al.,
2003). We use NetworkX (Hagberg et al., 2008) to generate such graphs.

We compare GAP against hMETIS (Karypis & Kumar, 2000) which is a general framework and
shown to provide high quality partitions in different domains (e.g., VLSI, road network (Miettinen
et al., 2006; Xu & Tan, 2012). We set the hMETIS parameters to return balanced partitions with
minimum edge cut. Moreover, since hMETIS is a randomized algorithm, we pick its best result over
100 iterations. We evaluate the performance of the resulting partitions by examining 1) Edge cut
(Cut): the ratio of the cut to the total number of edges, and 2) Balancedness (Bal): is one minus the
MSE of number of nodes in every partition and balances partition (ng ).

3.2 PERFORMANCE

Since hMETIS does not generalize to unseen graphs and optimizes one graph at a time, we also
constrain GAP to optimize one graph at a time for a fair comparison. We discuss the generalization
ability of GAP in Section 3.3. Table 1 shows the performance of GAP against hMETIS on a 3-
partition problem over real TensorFlow graphs. Both techniques generate very balanced partitions,
with GAP outperforming hMETIS on edge cut for the VGG graph.
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Computation graphs hMETIS GAP
Name Cut Bal Cut Bal
VGG 0.052 0.999 0.046 0.998

MNIST-conv 0.054 0.998 0.057 0.999
ResNet 0.044 0.999 0.043 0.998
AlexNet 0.052 0.998 0.053 0.998

Inception-v3 0.047 0.999 0.046 0.998

Table 1: Performance of GAP against hMETIS over a given graph. For edge cut lower is better, for
balancedness (Bal) higher is better.

AlexNet Inception-v3 ResNet
Embedding Cut Bal Cut Bal Cut Bal

No embedding 0.166 0.717 0.242 0.740 0.450 0.908
GCN offline 0.078 0.996 0.123 0.984 0.110 0.941
GraphSAGE

offline
0.070 0.998 0.088 0.992 0.093 0.959

GraphSAGE
online

0.069 0.998 0.064 0.987 0.084 0.983

Table 2: Generalization results: GAP is trained on VGG and validated on MNIST-conv. During
inference, the model is applied to unseen TensorFlow graphs: ResNet. Inception-v3, and AlexNet.
According to Table 1, the ground truth for VGG, MNIST-conv, and AlexNet is 99% balanced partitions
with 5% edge cut and for ResNet and Inception-v3, it is 99% balanced partitions with 4% edge cut.
GraphSAGE online generalizes better than the other models.

3.3 GENERALIZATION

In this section, we show that GAP generalizes effectively on real and synthetic datasets. To the best
of our knowledge, we are the first to propose a learning approach for graph partitioning that can
generalize to unseen graphs.

3.3.1 GENERALIZATION ON REAL GRAPHS
In this set of experiments, we train GAP with a single TensorFlow graph, VGG, and validate on
MNIST-conv. At inference time, we test the trained model on unseen TensorFlow graphs: AlexNet,
ResNet, and Inception-v3. Table 2 shows the result of our experiments, and illustrates the importance
of the graph embeddings in generalization. The operation type (such as Add, Conv2d, and L2loss in
TensorFlow) is used as the node feature. We encode all features as one-hots. Following Section 2, we
leverage GCN (Kipf & Welling, 2017) and GraphSAGE (Hamilton et al., 2017) to capture similarities
across graphs. In GCN offline and GraphSAGE offline, we do not train the graph embedding module
(Figure 1) without gradient flow from the partitioning module, while in GraphSAGE online both
modules are trained jointly. Table 2 shows that the GraphSAGE online (last row) achieves the best
performance and generalizes better than the other models. Note that this model is trained on a single
graph, VGG with only 1325 nodes, and it is tested on AlexNet, ResNet, and Inception-v3 with 798,
20586, and 27114 nodes, respectively.

Model Architecture and Hyper-parameters: Here, we describe the details of the model with the
best performance (corresponding to the last row of Table 2). The number of features (TensorFlow
operation types) is 1518. GraphSAGE has 5 layers of 512 units with shared pooling, and the graph
partitioning module is a 3 layer dense network of 64 units with a final softmax layer. We use ReLU as
activation function and all weights are initialized using Xavier initialization Glorot & Bengio (2010).
We use the Adam optimizer with a learning rate of 7.5e-5.

3.3.2 GENERALIZATION ON SYNTHETIC GRAPHS
We further evaluate the generalization of GAP on Random and Scale-free graphs. Note that we train
and test GAP on the same type of graph, but number of nodes may vary. For example, we train GAP
on random graphs of 1k nodes and test on random graphs of 1k and 10k nodes (50k and 5M edges
respectively). Similarly, we train GAP on scale-free graphs of 1k nodes and test on scale-free graphs
of 1k and 10k nodes (2.5k and 21k edges respectively).
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Table 3 shows the edge cut and balancedness of GAP against hMETIS on random and scale-free
graphs. The results are the average over the 5 graphs of 1k and 10k nodes. For a given type of graph
(random or scale-free), we train GAP with ten graphs and we then test the trained models on 5 unseen
graphs of 1k and 10k nodes and we report the average results. Note that we could train with more
graphs; however, even the results by training on 10 graphs is comparable with hMETIS. On the other
hand, since hMETIS is a randomized algorithm, we run it 100 times for each graph and we pick the
best result. As shown in Table 3, GAP provides high quality partitions over the unseen graphs.

Model Architecture and Hyper-parameters: Unlike computation graphs where node features are
operation types, nodes in synthetic graphs have no features. Furthermore, we must train a model that
generalizes to graphs of different sizes. For example, we train a model on a random graph with 1k
nodes and test it on a random graph with 10k nodes. To do so, we apply PCA to the adjacency matrix
of a featureless graph and retrieve embeddings of size 1000 as our node features. We use ReLU as
our activation function and all weights are initialized using Xavier initialization. We also use the
Adam optimizer. Here are the rest of the hyperparameters for each model.

GAP-Scalefree: Trained with 10 scale-free graphs. GraphSAGE has 4 layers of 128 units, and graph
partitioning module is 1 layer dense network of 64 units with softmax. Learning rate is 7.5e-6.

GAP-Random: Trained with 10 random graphs. GraphSAGE has 2 layers of 256 units with shared
pooling, and graph partitioning module is 3 layer dense network of 128 units with softmax. Learning
rate is 7.5e-6.

Random-1k Random-10k Scalefree-1k Scalefree-10k
Cut Bal Cut Bal Cut Bal Cut Bal

GAP 0.654
±9.4E-3

0.983
±1.3E-2

0.654
±8.9E-3

0.985
±8.1E-3

0.439
±6.5E-2

0.938
±5.3E-2

0.411
±9.2E-2

0.979
±5.7E-2

hMETIS 0.67
±2.1E-2

0.99
±4.6E-5

0.666
±1.1E-2

0.984
±2.5E-5

0.496
±2.0E-2

0.968
±5.3E-3

0.505
±3.2E-2

0.99
±1.3E-5

Table 3: Generalization results on synthetic graphs: GAP is trained on random graphs of 1k nodes
and test on new random graphs of 1k and 10k nodes. Similarly, we train GAP on scale-free graphs of
1k nodes and test on new scale-free graphs of 1k and 10k nodes. The results are the average over the
5 graphs of 1k and 10k nodes. The results for hMETIS is the best among 100 runs on each graph.

4 CONCLUSION

We propose a deep learning framework, GAP, for the graph partitioning problem. Our GAP framework
enables generalization: we can train models that produce performant partitions at inference time,
even on unseen graphs. This generalization is an advantage over existing baselines which redo the
optimization for each new graph. Our results over widely used machine learning models (ResNet,
VGG, and Inception-v3), scale-free graphs, and random graphs confirm that GAP achieves high
quality partitions even on unseen graphs.
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