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ABSTRACT

Graph convolutional networks (GCNs) are a popular class of neural networks
leveraging sparse and discrete dependency structures between data points. Ap-
plying GCNs to real-world applications, however, is challenging due to the fact
that graph-structures are noisy and incomplete or may not be available at all. We
propose a method for jointly learning the graph and weights of a GCN by ap-
proximately solving a bilevel program whose inner and outer objectives aim at
optimizing, respectively, the parameters of a GCN and its graph structure. We
show that the proposed method, named LDS, outperforms related approaches by a
significant margin on datasets where the dependency structure is either incomplete
or completely missing1.

1 INTRODUCTION

Relational learning aims to leverage not only the attributes of data points but also their dependency.
Diagnosing a patient, for example, depends on the patient’s vitals and demographic information but
also on the same information about their relatives, the information about the hospitals they have
visited, and so on. Graph neural networks (GNNs) (Scarselli et al., 2009) are a popular class of
learning methods that incorporate sparse and discrete dependency structures between data points.

While a graph structure is available in some domains, in others it has to be inferred or constructed.
A possible approach is to first create a k-nearest neighbor (kNN) graph based on some measure of
similarity between data points. This is a common strategy used by several learning methods such
as LLE (Roweis & Saul, 2000) and Isomap (Tenenbaum et al., 2000). A major shortcoming of this
approach, however, is that the efficacy of the resulting models hinges on the choice of k and, more
importantly, on the choice of a suitable similarity measure over the input features. In any case, the
graph creation and parameter learning steps are independent and require heuristics and trial and error.
Alternatively, one could simply use a kernel matrix to model the similarity of examples implicitly
at the cost, however, of introducing a dense dependency structure which may be problematic from a
computational point of view.

We propose LDS (learning descrete structures), a novel framework for learning discrete and sparse
dependencies between data points while simultaneously training the parameters of graph convolu-
tional networks (GCN), a class of GNNs. Intuitively, GCNs learn node representations by passing
and aggregating messages between neighboring nodes (Kipf & Welling, 2017; Monti et al., 2017;
Gilmer et al., 2017; Hamilton et al., 2017; Duran & Niepert, 2017; Velickovic et al., 2018). We pro-
pose to learn a generative probabilistic model for graphs, samples from which are used both during
training and at prediction time. Edges are modelled with random variables whose parameters are
treated as hyperparameters in a bilevel learning framework (Franceschi et al., 2018). We iteratively
sample the structure while minimizing an inner objective (a training error) and optimize the edge
distribution parameters by minimizing an outer objective (a validation error).

∗Work done while visiting researcher at NEC Labs Europe.
1This is an abridged version of the paper Learning Discrete Structures for Graph Neural Networks, to appear

at ICML 2019, and available as pre-print at https://arxiv.org/abs/1903.11960.
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Figure 1: Schematic representation of our approach for learning discrete graph structures for GNNs.

To the best of our knowledge, LDS is the first method that simultaneously learns the graph struc-
ture and parameters of a GNN for semi-supervised classification. Moreover, and this might be of
independent interest, we adapt gradient-based hyperparameter optimization to work for a class of
discrete hyperparameters (unweighted edges, in this work). The proposed approach makes GCNs
applicable to problems where the graph is incomplete or entirely missing. We conduct a series of
experiments and show that the proposed method is competitive with and often outperforms exist-
ing approaches. We also verify that the resulting graph generative models have meaningful edge
probabilities.

2 LEARNING DISCRETE GRAPH STRUCTURES

Given a graph G with N nodes, input features X ∈ X ⊆ RN×n, and an (unweighted) adjacency
matrix A ∈ {0, 1}N×N := H, we are interested in GCNs of the form

fw : X ×H → YN fw(X,A) = ŷ

where Y is a set of class labels and w ∈ Rd are the model’s weights. Given a subset of training
nodes VTrain and a point-wise loss function `, the parameters of f can be learned by minimizing
some regularized empirical loss L(w,A) =

∑
v∈VTrain

`(ŷv, yv) + Ω(w).

Now, let us suppose that the true adjacency matrix A is missing or incomplete. Since, ultimately, we
are interested in finding a model that minimizes the generalization error, we assume the existence
of a second subset of instances with known target, VVal (the validation set), from which we can
estimate the generalization error. Hence, we propose to find A ∈ H that minimizes the function

F (wA, A) =
∑
v∈VVal

`(fwA(X,A)v, yv)

where wA is the minimizer, assumed unique, of the training loss L for a fixed adjacency matrix A.
L and F can be considered as the inner and outer objectives of a mixed-integer bilevel programming
problem where the outer objective aims to find an optimal discrete graph structure and the inner
objective the optimal parameters of the GCN given a graph. Unfortunately, the resulting bilevel
problem is intractable. Instead of solving it directly, we propose to learn the parameters of a graph-
generative model and to solve the bilevel programming problem in expectation. We maintain the
generative model for graph structures and reformulate the bilevel program in terms of the (contin-
uous) parameters of its distribution. Specifically, we propose to model each edge with a Bernoulli
random variable. Let H = Conv(H) be the convex hull of the set of adjacency matrices for N
nodes. By modeling all possible edges as a set of mutually independent Bernoulli random variables
with parameter matrix θ ∈ H we can sample graphs H 3 A ∼ Ber(θ), and restate the bilevel
problem by taking the expectation over graphs as

min
θ∈H

EA∼Ber(θ) [F (wθ, A)] wθ = arg min
w

EA∼Ber(θ) [L(w,A)] ; (1)

both the inner and the outer objectives are now continuous (and possibly smooth) functions of the
Bernoulli parameters. The bilevel problem (1) is still challenging to solve efficiently since the so-
lution of the inner problem is not available in closed form for GCNs and the expectations are in-
tractable to compute exactly. An efficient algorithm, therefore, will only be able to find approximate
stochastic solutions, that is, θi,j ∈ (0, 1). Before describing a method to solve the optimization
problem approximately with hypergradient descent, we turn to the question of obtaining a final
GCN model that we can use for prediction. For a given distribution Pθ, we propose to compute an
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Algorithm 1 LDS

1: Input data: X , Y , Y ′[, A]
2: Input parameters: η, τ [, k]
3: [A← kNN(X, k)] {kNN graph if A = 0}
4: θ ← A {Init. Pθ as a deterministic distr.}
5: while Stopping condition is not met do
6: t← 0
7: while Inner objective decreases do
8: At ∼ Ber(θ) {Sample structure}
9: wθ,t+1 ← Φt(wθ,t, At) {Optimize inner

objective}

10: t← t+ 1
11: if t = 0 (mod τ) then
12: G← RevHG(F , Y , θ, (wθ,i)

t
i=t−τ )

13: θ ← ProjH[θ − ηG] {Optimize outer
objective}

14: end if
15: end while
16: end while
17: return w, Pθ {Best found weights and

probability distribution}

empirical estimate of the output of fw as f̂w(X) = 1
S

∑S
i=1 fw(X,Ai), where S > 0 is the num-

ber of graphs we wish to draw; f̂w is an unbiased estimator of the expected output EA[fw(X,A)].
Hence, to use a GCN fw learned with the bilevel formulation for prediction, we sample S graphs
from the distribution Pθ and compute the prediction as the empirical mean of the values of fw. We
argue that, for sparse graphs and small S, this is more efficient than evaluating a “dense GCN.” In-
deed, computing f̂w has a cost of O(SCd) compared to O(N2d) for a fully connected graph, where
C =

∑
ij θij is the expected number of edges, and d is the dimension of the weights. Another

advantage of using a graph-generative model is that we can interpret it probabilistically.

2.1 STRUCTURE LEARNING VIA HYPERGRADIENT DESCENT

We now discuss a practical algorithm to approach the bilevel problem2 defined by Eq. (1). Regarding
the inner problem, we note that the expectation EA∼Ber(θ) [L(w,A)] =

∑
i Pθ(Ai)L(w,Ai) is

composed of a sum of 2N ·N terms, intractable even for relatively small graphs. We can, however,
choose a tractable stochastic learning dynamics Φ such as stochastic gradient descent (SGD),

wθ,t+1 = Φ(wθ,t, At) = wθ,t − γt∇L(wθ,t, At) (2)

where γt is a learning rate and At ∼ Ber(θ) is drawn at each iteration. For t→∞, wθ,t converges
to a weight vector wθ that depends on the edges’ probability distribution (Bottou, 2010).

Letwθ,T be an approximate minimizer of EL (where T may depend on θ). We now need to compute
an estimator for the hypergradient∇θEA∼Ber(θ)F .We have

∇θEF (wθ,T , A) = E∇θF (wθ,T , A) = E [∂wF (wθ,T , A)∇θwθ,T + ∂AF (wθ,T , A)∇θA] (3)

where we can swap the gradient and expectation operators since the expectation is over a finite
random variable, assuming that the loss function F bounded. We use the so-called straight-through
estimator (Bengio et al., 2013) and set ∇θA := I (which would be 0 a.e. otherwise; see also
Appendix B); ∇θA appears both explicitly in Eq. (3) and in the computation of ∇θwθ,T , through
∂θΦ(wθ,t, At) (see Franceschi et al., 2017, for details). Finally, we take the single sample Monte
Carlo estimator of Eq. (3) to update the parameters θ with projected gradient descent on the unit
hypercube.

Computing the hypergradient by fully unrolling the dynamics may be too expensive both in time
and memory We propose to truncate the computation and estimate the hypergradient every τ it-
erations, where τ is a parameter of the algorithm. This is essentially an adaptation of truncated
back-propagation through time (Werbos, 1990; Williams & Peng, 1990). A sketch of the method
is presented in Algorithm 1. Inputs and operations in squared brackets are optional. The algorithm
contains stopping conditions at the outer and at the inner level. While it is natural to implement the
latter with a decrease condition on the inner objective, we find it useful to implement the first with a
simple early stopping criterion. A fraction of the examples in the validation set is held-out to com-
pute after each outer iteration the accuracy using the predictions of the empirically expected model,
and we let the optimization procedure terminate if there is no improvement for some consecutive
outer loops. This helps avoiding overfitting the outer objective of Eq. (1), which may be a concern in
this context given the quantity of (hyper)parameters being optimized. The hypergradients estimated

2We refer to the appendix for a short introduction to bilevel programming for machine learning.
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Table 1: Test accuracy (± standard deviation, 5 random seeds) in percentage on various classification
datasets. The best results and the statistical competitive ones (by paired t-test with α = 0.05) are in
bold. We compare kNN-LDS to several supervised baselines and semi-supervised learning methods.
No graph is provided as input. kNN-LDS achieves high accuracy results on most of the datasets and
yields the highest gains on datasets with underlying graphs (Citeseer, Cora).

Wine Cancer Digits Citeseer Cora 20news FMA
LogReg 92.1 (1.3) 93.3 (0.5) 85.5 (1.5) 62.2 (0.0) 60.8 (0.0) 42.7 (1.7) 37.3 (0.7)
RBF SVM 94.1 (2.9) 91.7 (3.1) 86.9 (3.2) 60.2 (0.0) 59.7 (0.0) 41.0 (1.1) 38.3 (1.0)
FFNN 89.7 (1.9) 92.9 (1.2) 36.3 (10.3) 56.7 (1.7) 56.1 (1.6) 38.6 (1.4) 33.2 (1.3)
LP 89.8 (3.7) 76.6 (0.5) 91.9 (3.1) 23.2 (6.7) 37.8 (0.2) 35.3 (0.9) 14.1 (2.1)
ManiReg 88.2 (3.3) 86.0 (4.0) 82.8 (3.3) 67.7 (1.6) 62.3 (0.9) 46.6 (1.5) 34.2 (1.1)
SemiEmb 88.9 (3.7) 86.4 (5.4) 90.7 (2.7) 68.1 (0.7) 62.9 (1.1) 46.3 (1.6) 35.5 (1.9)
RBF-GCN 90.6 (2.3) 92.6 (2.2) 70.8 (5.5) 58.1 (1.2) 57.1 (1.9) 39.3 (1.4) 33.7 (1.4)
kNN-GCN 93.1 (2.7) 93.4 (2.8) 91.3 (2.0) 69.5 (1.1) 66.5 (0.4) 43.3 (0.4) 37.9 (0.5)
kNN-LDS 97.3 (0.4) 94.4 (1.9) 92.5 (0.7) 71.5 (1.1) 71.5 (0.8) 46.4 (1.6) 39.7 (1.4)
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Figure 2: Mean accuracy ± standard deviation on validation (dashed lines) and test (solid lines)
sets for incomplete graph scenario on Cora (Left) and Citeseer (Center). (Right) Validation of the
number of steps τ used to compute the hypergradient (Cora); τ = 0 is alternating minimization.

with Algorithm 1 at each outer iteration are biased. The bias stems from both the straight-trough
estimator and from the truncation procedure introduced in lines 11-13 (Tallec & Ollivier, 2017).
Nevertheless, we find empirically that the algorithm is able to make reasonable progresses, finding
configurations in the distribution space that are beneficial for the tasks at hand.

3 EXPERIMENTS

We conducted a series of experiments with the aim of evaluating LDS on node (semi-supervised)
classification problems where a graph structure is available but incomplete, or not available. In the
first case we show that the proposed algorithm is able to recover a meaningful edge distribution,
in the latter case we show that LDS is competitive with respect to various baselines and variations,
as well as other popular semi-supervised learning methods such as such as label propagation (LP)
(Zhu et al., 2003), manifold regularization (ManiReg) (Belkin et al., 2006), and semi-supervised
embedding (SemiEmb) (Weston et al., 2012). We use two popular benchmark datasets, Cora and
Citeseer (Sen et al., 2008), used to evaluate relational learners in general and GCNs in particular, as
well as datasets available in scikit-learn (Pedregosa et al., 2011), and a recent genre classification
dataset (Defferrard et al., 2017) named FMA. To evaluate the efficacy of LDS in the “incomplete
graph scenario”, we randomly sample 25%, 50%, 75%, and 100% of the edges of Cora and Citeseer.
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Figure 3: Histograms for three Cora nodes
belonging either to the train (left), valida-
tion (center) and test set (right).

Table 1 lists the results for the semi-supervised classi-
fication problems. The supervised learning baselines
(LogReg, Linear SVM, RBF SVM, FFNN) work well
on some datasets such as Wine and Cancer but fail to
provide competitive results on others; semi-supervised
learning baselines can only improve upon the super-
vised learning baselines on few datasets.

The results on the incomplete graphs are shown in Fig-
ure 2. For each percentage of retained edges the accu-
racy on the validation (used for early stopping) and the
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Figure 4: T-SNE visualization of the output activations (before the classification layer) on the Cite-
seer dataset. Left: Dense-GCN, Center: kNN-GCN, Right kNN-LDS

test sets are plotted. LDS achieves accuracy gains of up to 7 percentage points. Notably, the pro-
posed method improves the generalization accuracy of GCN models also when the given graph is
that of the respective dataset (100% of edges retained). We achieve new SotA results on Citeseer
and Cora with a wide margin. Conversely, adding random edges during training (GCN-RND) does
not help decreasing the generalization error. In Figure 3 we report the normalized histograms of the
optimized edges probabilities for three nodes from Cora (25% edges retained), sorted into six bins
in log10-scale. Edges are divided in two groups: edges between nodes of the same class (blue) and
between nodes of unknown or different classes (orange). LDS is able to learn highly non-uniform
edge probabilities that reflect the class membership of the nodes.

We further visualize the embeddings learned by GCN and LDS using T-SNE (Maaten & Hinton,
2008). Figure 4 depicts the T-SNE visualizations of the embeddings learned on Citeseer with Dense-
GCN (left), kNN-GCN (center), and kNN-LDS (right). As can be seen, the embeddings learned by
kNN-LDS provides the best separation among different classes.

4 CONCLUSION

We propose LDS, a framework that simultaneously learns the graph structure and the parameters
of a GNN. While we have used a specific GCN variant (Kipf & Welling, 2017) in the experiments,
the method is more generally applicable to other GNNs. The strengths of LDS are its high ac-
curacy gains on typical semi-supervised classification datasets at a reasonable computational cost.
Moreover, due to the graph generative model LDS learns, the edge parameters have a probabilistic
interpretation.

The method has its limitations. While relatively efficient, it cannot currently scale to large datasets:
this would require an implementation that works with mini-batches of nodes. We evaluated
LDS only in the transductive setting, when all data points (nodes) are available during training.
Adding additional nodes after training (the inductive setting) would currently require retraining the
entire model from scratch. When sampling graphs, we do not currently enforce the graphs to be
connected. This is something we anticipate to improve the results, but this would require a more
sophisticated sampling strategy. All of these shortcomings motivate future work. Alongside these
considerations, we also intend to experiment with different strategies to compute the hypergradient
in Eq. (3), for instance by making use of recurrent back-propagation (Liao et al., 2018).

In addition, we hope that suitable variants of LDS algorithm will also be applied to other problems
such as neural architecture search or to tune other discrete hyperparameters.
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A BILEVEL PROGRAMMING IN MACHINE LEARNING

Bilevel programs are optimization problems where a set of variables occurring in the objective func-
tion are constrained to be an optimal solution of another optimization problem (see Colson et al.,
2007, for an overwiew). Formally given two objective functions F and L, the outer and inner ob-
jectives, and two sets of variables, θ ∈ Rm and w ∈ Rd, the outer and inner variables, a bilevel
program is given by

min
θ,wθ

F (wθ, θ) such that wθ ∈ arg min
w
L(w, θ). (4)

Bilevel programs arise in numerous situations such as hyperparmeter optimization, adversarial,
multi-task, and meta-learning (Bennett et al., 2006; Flamary et al., 2014; Muñoz-González et al.,
2017; Franceschi et al., 2018).

Solving problem 4 is challenging since the solution sets of the inner problem are usually not available
in closed-form. A standard approach involves replacing the minimization of L with the repeated
application of an iterative optimization dynamics Φ such as (stochastic) gradient descent (Domke,
2012; Maclaurin et al., 2015; Franceschi et al., 2017). Let wθ,T denote the inner variables after T
iterations of the dynamics Φ, that is, wθ,T = Φ(wθ,T−1, θ) = Φ(Φ(wθ,T−2, θ), θ), and so on. Now,
if θ and w are real-valued and the objectives and dynamics smooth, we can compute the gradient of
the function F (wθ,T , θ) w.r.t. θ, denoted throughout as the hypergradient ∇θF (wθ,T , θ), as

∂wF (wθ,T , θ)
dwθ,T

dθ
+∇θF (wθ,T , θ), (5)

where the symbol ∂ denotes the the Jacobian3, ∇ the gradient (of a scalar functions) and d
dθ is the

total derivative. The first term can be computed efficiently in time O(T (d+m)) with reverse-mode
algorithmic differentiation (Griewank & Walther, 2008) by unrolling the optimization dynamics,
repeatedly substituting wθ,t = Φ(wθ,t−1, θ) and applying the chain rule. This technique allows to
optimize a number of hyperparameters several orders of magnitude greater than classic methods for
hyperparameter optimization (Feurer & Hutter, 2018).

B GRADIENT ESTIMATION FOR DISCRETE RANDOM VARIABLES

Due to the intractable nature of the two bilevel objectives, LDS needs to estimate the hypergradients
through a stochastic computational graph (Schulman et al., 2015). Using the score function estima-
tor, also known as REINFORCE (Williams, 1992), would treat the outer objective as a black-box
function and would not exploit F being differentiable w.r.t. the sampled adjacency matrices and the
inner optimization dynamics. Conversely, the path-wise estimator is not readily applicable, since
the random variables are discrete.

LDS borrows from an heuristic solution proposed before (Bengio et al., 2013), at the cost of having
biased estimates. Given a function h(z), where z is a discrete random variable (usually Bernoulli
distributed) whose distribution depends on parameters θ, the technique consists in computing an
estimator of the gradient of `(θ) = Ezh(z) as

ĝ(z) =
∂h(z)

∂z
. (6)

Note that, while ∂z
∂θ is 0 almost everywhere, and not defined on the “threshold“ points (being z

discrete), h may still be a smooth function of z. In this case Eq. 6 is well defined and it yields, in
general, non-zero quantities. This can be viewed as “setting” ∂z

∂θ to the identity, or, from another
point of view, as “ignoring” the hard thresholds on the computational graphs. ĝ is a random variable
that depends, again, from θ, and the true gradient ∇`(θ) can be estimated by drawing (one sample)
from ĝ.

As an illustrative example, consider the very simple case where h(z) = (as − b)2/2 for scalars a
and b, with z ∼ Ber(θ), θ ∈ [0, 1]. The gradient (derivative) of Eh w.r.t. θ can be easily computed
as

∂

∂θ
Ez∼Ber(θ)h(z) =

∂

∂θ

[
θ

(a− b)2

2
+ (1− θ) (−b)2

2

]
=
a2

2
− ab, (7)

3Which is equal to the transpose of the gradient for (real-valued) scalar functions.
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whereas the corresponding straight-through estimator, which is a random variable, is given by

ĝ(z) =
∂h(z)

∂z
= (az − b)a z ∼ Ber(θ).

One has, however, that

Ez∼Ber(θ)ĝ(z) = θ(a− b)a+ (1− θ)(−ab) = θa2 − ab,

resulting in ĝ to be biased for θ 6= 1
2 .

There are other approaches to the problem of estimating gradients for discrete random variables.
Recently, Jang et al. (2017); Maddison et al. (2017) presented a method based on continuous re-
laxations to reduce variance, which Tucker et al. (2017) combined with REINFORCE to obtain an
unbiased estimator. Grathwohl et al. (2018) further introduced surrogate models to construct control
variates for black-box functions. Unfortunately, these latter methods require to compute the function
in the interior of the hypercube, possibly in multiple points (Tucker et al., 2017), facts that would
introduce additional computational overhead4.

4Recall that F can be computed only after (approximately) solving the inner optimization problem.
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