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ABSTRACT

We introduce a new molecular dataset, named AlChemy, for developing machine
learning models useful in chemistry and materials science. The dataset, as of the
workshop submission date, comprises of 12 quantum mechanical properties of
67,000 organic molecules up to 12 heavy atoms, sampled from the GDB database.
The Alchemy dataset expands the volume and diversity of existing molecular
datasets. Our preliminary benchmark of the state-of-the-art machine learning
models on AlChemy clearly manifests the usefulness of new data in validating
and developing machine learning models.

Recent advances in machine learning (ML) techniques have proven immensely useful for a broad
range of applications including natural language processing (Shen et al., 2017), computer vision (He
et al.) and strategic plannings (Silver et al., 2016; 2017) etc. These remarkably successful demon-
strations have drawn high interests from the physical and biological science communities. For in-
stance, ML-enhanced abilities to predict molecular properties with high precision (Gilmer et al.,
2017; Liao et al., 2019), efficient generations of novel molecular structures (Jin et al., 2018), and bet-
ter strategies in synthesis planning (Segler et al., 2018) and rectrosynthesis (Segler et al., 2017) will
significantly accelerate drug design and novel material discovery (Sanchez-Lengeling & Aspuru-
Guzik, 2018; Gómez-Bombarelli et al., 2018). However, the scarcity of high-quality datasets and
the lack of transferability of ML techniques impede the wide-scale adoption of molecular ML tech-
niques in practice.

The importance of supervised information for ML development cannot be understated. The Ima-
geNet (Deng et al., 2009), a collection of more than 1.5 million labelled images distributed over
1, 000 classes, facilitates the development of new model such as ResNet (He et al.) that sur-
passes human performance in image recognition. In another instance, the Stanford Question An-
swering Dataset (SQuAD) (Rajpurkar et al., 2016), a reading comprehension dataset consisting of
150, 000 questions and answers, is critical to the development of a powerful language representa-
tion model BERT (Devlin et al., 2019). Recognizing the importance of abundance of datasets, the
chemistry community has recently compiled a comprehensive collection of benchmarking datasets,
the MoleculeNet (Wu et al., 2018), for supervised learning tasks. Despite this effort by the Pande
group at Stanford, the amount of data in the MoleculeNet is often inadequate in comparison to
the typical size of ML training datasets. For instance, there are less than 150K molecular entries
for training models to predict the quantum mechanical properties of small organic molecules. The
biggest dataset QM9 within MoleculeNet is further restricted to curating molecules composed of
Hydrogen (H), Carbon (C), Nitrogen (N), Oxygen (O) and Florine (F). A better data variety, such as
presence of more atom types, can help to more thoroughly investigate and improve some aspects of
ML models such as transferability and generalibility.

Herein we report a dataset that contains the quantum mechanical properties of around 67,000 or-
ganic molecules with up to 12 heavy atoms (C, N, O, S, and halogens including F) from the GDB-
17 MedChem database (Ruddigkeit et al., 2012). We name our collection the AlChemy dataset.

∗Authors are ordered alphabetically
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Table 1: Dataset Details: number of molecules and tasks
Dataset Data Type #Tasks #Molecules Rec-Split Maximum #Heavy Atoms

QM7 SMILES, 3D coordinates 1 7,160 Stratified 7
QM7b 3D coordinates 14 7,210 Random 7
QM8 SMILES, 3D coordinates 12 21,786 Random 8
QM9 SMILES, 3D coordinates 12 133,885 Random 9

AlChemy SMILES, 3D coordinates 12 67,000 Random 12

The quantum mechanical properties are calculated with the Python-based Simulations of Chemistry
Framework (PySCF) (Sun et al., 2018). As compared to the full GDB-17 database, the MedChem
subset contains molecules that are more suitable for medicinal chemistry, based on functional group
and complexity considerations. Therefore, the AlChemy dataset is significantly more comprehen-
sive than existing quantum chemistry datasets, and the molecules are considered more drug-like.
AlChemy dataset could serve for evaluation, benchmarking and development of ML methods for
applications in chemistry and materials science.

1 RELATED WORK

There are only a few molecular datasets specifically built for benchmarking ML models for chem-
istry and material applications. Recently, a collection of various datasets have been compiled and
collectively branded as the MoleculeNet. These datasets are furthered divided into different cate-
gories: quantum mechanics, physical chemistry, biophysics and physiology. In this work, we report
our contributions of new datasets for multi-task learning of quantum mechanical properties of or-
ganic molecules. Hence, only the subset of quantum mechanical databsets within the MoleculeNet
is summarized below.

QM7/QM7b The QM7 dataset contains 7,165 molecules, a subset of GDB-13, with at most 7
C,N,O,S atoms. The learning task is to predict a single electronic property, the atomization energy
given the input feature in Table 1. All the physical properties listed in the dataset were calculated
with the ab-initio density function theory at the level of PEB0/tier2 basis set. QM7b is an extension.
13 additional properties are computed at different levels of accuracy (ZINDO, SCS, PBE0, GW).
The data is further expanded to 7,211 molecules.

QM8 This dataset provides electronic properties of 21,800 molecules comprising up to 8 C,N,O,F
atoms, a subset of GDB-17. Not only ground-state electronic properties but also four excited-state
properties at different levels of accuracy (TDDFT using PBE0 and CAM-B3LYP and CC2) are
computed for multi-task learning.

QM9 This dataset contains geometric, energetic, electronic and thermodynamics (totalling 13)
properties for 134,000 organic molecule comprising up to 9 non-hydrogen atom within the GDB-17
database. All physical properties are computed at the accuracy of B3LYP/6-31G(2df,p) based DFT.

2 THE ALCHEMY DATASET

2.1 MOLECULAR REPRESENTATIONS: SMILES AND 3D GEOMETRY

Intuitively, a molecule is a stable 3D configurations of atoms connected by chemical bonds. The
essential features of a molecule can be encoded into a molecular graph with each vertex represent-
ing an atom and each edge representing a bond. Simplified Molecular-Input Line-Entry System
(SMILES) is a text-based data structure to store molecular graphs on computers. While SMILES
and graphs give a minimalist approach to describing molecules, one needs the 3D coordinates of all
atoms in a stable configuration for quantum chemistry calculations. This process of recovering 3D
geometry from the SMILE string is called the geometry optimization.
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Table 2: Calculated properties. Last two entries are not present in the QM9 dataset
Property Unit Mean Relative Error Meam Absolute Error

Rotational constants GHz - -
Dipole moment (mu) Debye 0.1928 0.6401
Polarizability (alpha) a3

0 0.0104 0.7610
HOMO Eh 0.0244 0.0060
LUMO Eh 0.2114 0.0061

gap Eh 0.0275 0.0073
〈R2〉 (R2) a2

0 0.0404 52.3778
Zero point energy (zpve) Eh 0.0021 0.0003

Internal energy (U0) Eh 0.0006 0.2486
Internal energy at 298.15 K (U) Eh 0.0006 0.2486

Enthalpy at 298.15 K (H) Eh 0.0006 0.2486
Free energy at 298.15 K (G) Eh 0.0006 0.2486

Heat capacity at 298.15 K (Cv) EhK−1 0.0038 3.8×10−7

Dipole moment vector - - -
3×3 Polarizability tensor - - -

2.2 DETAIL FOR THE DATA GENERATION

The molecular properties were calculated using PySCF’s implementation of the DFT Kohn-Sham
method at the B3LYP level with the basis set 6-31G(2df,p). The quantum chemistry model
B3LYP/6-31G(2df,p) was validated in an early work (Ramakrishnan et al., 2014) for small organic
molecules. Building a complementary dataset along the line of QM-series introduced in Sec. 1,
we computed the following categories of molecular properties: ground state equilibrium geome-
try, ground state electronic properties, and ground state thermochemical properties. The detail is
summarized in Table 2.

In the remaining sections, we clarify a few technical aspects of our workflow for interested experts
in quantum chemistry. The equilibrium geometry was optimized in three passes. We first used
OpenBabel (O’Boyle et al., 2011) to parse SMILES string and built the Cartesian coordinates with
MMFF94 force field optimization. The second pass employed the HF/STO-3G theory (incorpo-
rate quantum mechanical effects) to generate a preliminary geometry. In the final pass of geometry
relaxation, we used the B3LYP/6-31G(2df,p) model with the density fitting approximation for elec-
tron repulsion integrals. The auxiliary basis cc-pVDZ-jkfit (Weigend, 2002) is employed in density
fitting to build the Coulomb matrix and the HF exchange matrix.

When computing the ground state electronic properties and ground state thermochemical proper-
ties, the density fitting technique was disabled in our dataset generation program. In addition to the
molecular properties proposed by the original QM9 dataset, we also report the dipole moment vec-
tor, the 3×3 polarizability tensor and the atomic charges obtained by the meta-Lowdin population
analysis (Sun & Chan, 2014). The advantage of meta-lowdin population analysis, like other ad-
vanced population analysis prescriptions (Knizia, 2013), is that the obtained atomic charges possess
good transferability in different molecular environments.

2.3 COMPARISON TO THE QM9 DATASET

In AlChemy dataset, we reproduced results for a random selection of 28,732 molecules from QM9
and calculated properties for another selection of 38,268 molecules up to 12 heavy atoms in the
GDB-17 MedChem. The running time statistics and an example of geometry optimization can be
found in Appendix. The reproduction of selected QM9 data helps to validate the accuracy of our
computations. We draw attention to the third and fourth columns of Table 2. The mean relative
error and mean absolute error refers to the disagreement between our results and the original QM9.
Our calculations agree well with the original QM9 given the fact that different definitions of B3LYP
functionals were used in these calculations. Nevertheless, we notice a few disparities. The relative
error on LUMO energy is less a concern as we get a good agreement on the HOMO-LUMO energy
gap. It is well-known that the two definitions of B3LYP functionals tend to systematically shift
orbital energies in these calculations, and the energy gap should be a more appropriate comparison
criterion. However, inconsistency on mu and R2 constitutes more serious indications of disagree-
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Table 3: Performance Comparison (MAE)
QM9 AlChemy

MPNN2

(Gilmer et al., 2017)
MPNN

(Wu et al., 2018)
MPNN

(our impl.)
MPNN

(our impl.)
mu 0.03 - 0.5316 2.7448

alpha 0.092 - 0.4171 17.9973
HOMO 0.04257 - 0.0033 0.0173
LUMO 0.03741 - 0.0034 0.0261

gap 0.0688 - 0.0048 0.0262
R2 0.18 - 25.4747 362.8817

ZPVE 0.001524 - 0.0003 0.0186
U0 0.01935 - 0.1200 98.3374
U 0.01935 - 0.1201 98.5954
H 0.01677 - 0.0800 92.4926
G 0.01892 - 0.2802 98.2963
Cv 0.04 - 0.1422 33.6612

Average 0.0472245 ∼2.73 2.2648 67.0912

ments. We unambiguously trace this inconsistency back to the complexity of searching the optimal
molecular conformation among enormous molecular geometry local minimum. The geometry op-
timization could be stuck at the sub-optimal molecular conformation in either our dataset or QM9.
The large deviation between our dataset and QM9’s indicates that R2, as a direct output of molecular
geometry, is less predictable. This is also observed in our model training practice (Table 3).

3 THE BENCHMARKING RESULTS

We setup baselines using the Message Passing Neural Network (MPNN) model (Gilmer et al., 2017).
Our MPNN implementation is based on the authors’ prefer model trained individually on each tar-
get. As for hyper-parameters not declared in MPNN paper (Gilmer et al., 2017), we refer to their git
repository1 for default parameter setting. For detailed hyper-parameter setting, we list them in Ap-
pendix (Table 4). The code of our implementation will be publicly available after the double-blind
review period ends.

In the preliminary part of our experiment, we first reproduce the QM9 experiments for 12 targets
listed in (Gilmer et al., 2017) with the MPNN model. It is the state-of-the-art model for all regression
tasks of the QM9 dataset. QM9 contains 133,885 molecules. We use 10,000 for validation, 10,000
for testing, and the rest for training.

The primary part of our experiment focuses on testing the transferability of existing ML models in
quantum chemistry tasks. Models shall be first trained on QM9, and then tested against a subset
of our AlChemy dataset with the same atom types (C, N, H, O, F). This fraction contains 37,178
molecules with exactly 10 heavy atoms. The task of generalization to molecular graphs with more
heavy atoms is marked as a difficult problem in (Gilmer et al., 2017).

As for comparison metric, Mean absolute error (MAE) is used as evaluation metric in both experi-
ments. Results are reported in Table 3. For reader’s convenience, we list the corresponding results
reported in (Gilmer et al., 2017; Wu et al., 2018) as well.

We first focus on the comparison among our MPNN implementation and MPNN in (Gilmer et al.,
2017) and (Wu et al., 2018). Our MPNN implementation achieves similar performance to (Wu et al.,
2018), but differs from (Gilmer et al., 2017)’s results by two orders of magnitude. We also investigate
the generalizability of MPNN to larger molecules (see fifth column in Table. 3). Interestingly, we
observe large deviations among all targets — the test MAEs on AlChemy dataset differs from those
on QM9 dataset by up to orders of magnitude, which again reveals the difficulty in transferring

1https://github.com/brain-research/mpnn
2The MAEs of Gilmer et al. (2017)’s MPNN can be calculated as (Error Ratio (from their Table. 2)) ×

(Chemical Accuracy (from their Table. 5)). Interestd readers can refer to a detailed discussion in Appendix.
3Refer to Figure 14 in Wu et al. (2018)
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knowledge learned from small molecules to larger molecules, although we only increase the number
of heavy atoms by one.

4 CONCLUSIONS AND FUTURE WORK

The process of building the AlChemy dataset has been a rewarding experience. Along this journey,
we face the difficulty to optimize molecular geometries efficiently and accurately. We eventually use
a combination of two geometry optimization tools to overcome this problem. All the discrepancies
between our data and QM9’s can be precisely attributed to the disagreements on the optimized
geometries. Our preliminary benchmark results clearly manifest the usefulness of the AlChemy
dataset. The public availability of this dataset shall inspire further improvement of existing ML
models as well as the proposals of entirely new ones.
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5 APPENDIX

5.1 HYPER-PARAMETERS

We list detailed hyper-parameter settings of our MPNN implementation in Tabel. 4.

5.2 MORE DETAILS ON ALCHEMY DATA GENERATION

Figure. 1 shows AlChemy’s running time statistics; Figure. 2 shows an example of geometry opti-
mization process from AlChemy dataset.

5.3 CONVERSION OF UNITS

As clearly specified in Table 2, we adopt the atomic units for all numerics in the AlChemy dataset.
This choice is consistent with the QM9 dataset. However, we caution that the MAEs in the second
column of Table 3, quoted from Gilmer’s work (Gilmer et al., 2017), are given in a different set of
units. For instance, one has to divides all energy-related MAEs except the one for the zero-point
vibrational energy by 27 to convert the numbers into the atomic units. After appropriate conversions,
the disagreements between the actual numbers of Gilmer’s original work and our MPNN results will
be more pronounced.
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Table 4: Hyper-parameters.
Category Hyper-parameter Value

Preprocessing
edge features bond type + raw distance
node features Table 1 in Gilmer et al. (2017)

use Mulliken partial charges No

Message Passing Function
(Edge Network)

message passing steps T 6
edge network layers 4

edge network hidden dim 50
use multiple towers No

Update Function
(GRU, as in GG-NN (Li et al., 2016))

node hidden units d 50
GRU layer 1

Readout Function
(set2set (Vinyals et al., 2015))

set2set computations M 12
output NN hidden layer 1
output NN hidden units 200

Training

initial learning rate 0.00013
learning rate decay factor 0.5

optimizer Adam
batch size 20

traing epochs 540
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Figure 1: AlChemy’s running time statistics for molecules (with 10 heavy atoms) from GDB-17
MedChem. Each step takes 0.1/1.9/14.4 hours on average, respectively. The average total running
time is 16.4 hours.

(a) OpenBabel geometry (b) HF/STO-3G geometry (c) DFT geometry

Figure 2: An example for molecule CC(O)C(C)C(=O)NC=O, a random sample from AlChemy
dataset.
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