
Published as a workshop paper at ICLR 2019

MOLECULAR GEOMETRY PREDICTION USING A
DEEP GENERATIVE GRAPH NEURAL NETWORK

Elman Mansimov
New York University

Omar Mahmood
New York University

Seokho Kang
Sungkyunkwan University

Kyunghyun Cho
New York University
Facebook AI Research
CIFAR Azrieli Global Scholar
kyunghyun.cho@nyu.edu

ABSTRACT

A molecule’s geometry, also known as its conformation, is one of a molecule’s
most important properties, determining the reactions it participates in, the bonds
it forms, and the interactions it has with other molecules. Conventional confor-
mation generation methods minimize hand-designed molecular force field energy
functions that are not well correlated with the true energy function of a molecule
observed in nature. They generate geometrically diverse sets of conformations,
some of which are very similar to the ground-truth conformations and others of
which are very different. In this paper we propose a conditional deep generative
graph neural network that learns an energy function from data by directly learning
to generate molecular conformations given a molecular graph. On three large scale
small molecule datasets, we show that our method generates a set of conforma-
tions that on average is far more likely to be close to the corresponding reference
conformations than are those obtained from conventional force field methods. Our
method maintains geometrical diversity by generating conformations that are not
too similar to each other. We also show that our method can be used to provide
initial coordinates for conventional force field methods. On one of the evaluated
datasets we show that this combination allows us to combine the best of both
methods, yielding generated conformations that are on average close to ground-
truth conformations with some very similar to ground-truth conformations.

1 INTRODUCTION

We consider a molecule as an undirected, complete graph G = (V,E), where V is a set of vertices
corresponding to atoms, and E is a set of edges representing the interactions between pairs of atoms
from V . Each atom is represented as a vector vi ∈ Rdv of node features, and the edge between
the i-th and j-th atoms is represented as a vector eij ∈ Rde of edge features. There are M vertices
and M(M − 1)/2 edges. We define a plausible conformation as one that may correspond to a
stable configuration of a molecule. Given the graph of a molecule, the task of molecular geometry
prediction is the generation of a set of plausible conformationsXa = (xa1 , . . . , x

a
M ), where xai ∈ R3

is a vector of the 3-D coordinates of the i-th atom in the a-th conformation.

Molecules can transition between conformations and end up in different local minima based on the
stability of the respective conformations and environmental conditions. As a result, there is more
than one plausible conformation associated with each molecule; it is hence natural to formulate
conformation generation as finding (local) minima of an energy function F(X,G) defined on a pair
of molecule graph and conformation:

{X1, . . . , XS} = argmin
X
F(X,G). (1)

Alternatively, we could sample from a Gibbs distribution:

{X1, . . . , XS} ∼ pF (X|G) (2) pF (X|G) =
1

ζ(G)
exp {−F(X,G)} , (3)

1



Published as a workshop paper at ICLR 2019

where ζ is a normalizing constant. We use S to indicate the number of conformations we generate
from each molecule. Under this view, the problem of conformation generation is decomposed into
two stages. In the first stage, a computationally-efficient energy function F(X,G) is constructed.
The second stage involves either performing optimization as in Equation 1 or sampling as in Equa-
tion 2 to generate a set of conformations from this energy function.

Traditional Energy Function Construction and Minimization/Sampling A conventional ap-
proach is to define an energy function semi-automatically. The functional form of an energy function
is designed carefully to incorporate various chemical properties, whereas detailed parameters of the
energy function are either computationally or experimentally estimated. Two widely used energy
functions are the Universal Force Field (UFF) (Rappé et al., 1992) and the Merck Molecular Force
Field (MMFF) (Halgren, 1996). Once the energy function is defined, a conventional approach is
to run the minimization many times starting from different initial conformations. Due to the non-
convexity of the energy function, each run is likely to end up in a unique local minimum, allowing
us to collect a set of many conformations. Distance geometry (DG) (Blaney & Dixon, 1994) or
its variants, such as experimental-torsion basic knowledge distance geometry (ETKDG) (Riniker &
Landrum, 2015) is typically used to randomly generate an initial conformation that satisfies various
geometric constraints such as lower and upper bounds on the distances between atoms. Starting
from the initial conformation, an iterative optimization algorithm, such as L-BFGS (Liu & Nocedal,
1989) gradually updates the conformation until it finds a minimum of the energy function.

2 DEEP GENERATIVE MODEL FOR MOLECULAR GEOMETRY

We propose to “learn” an energy function F(G,X) from a database containing many pairs of a
molecule and its experimentally obtained conformation. Let D = {(G1, X

∗
1 ), . . . , (GN , X

∗
N )} be

a set of examples from such a database, where X∗n is “a” ground-truth conformation, often experi-
mentally obtained or verified. Learning an energy function can then be expressed as the following
optimization problem:

F̂(G,X) = argmax
F

1

N

N∑
n=1

log pF (X
∗
n|Gn)︸ ︷︷ ︸

(a)

, (4)

where pF is a Gibbs distribution defined using F as in Equation 3. In other words, we can learn the
energy function F by maximizing the log-likelihood of the data D.

2.1 CONDITIONAL VARIATIONAL GRAPH AUTOENCODERS

We use a conditional version of a variational autoencoder (Kingma & Welling, 2014) to model
the distribution p in Equation 4 (a) (we omit the subscript F for brevity). This choice enables an
underlying model to capture the complicated, multi-modal nature of this distribution, while allowing
us to efficiently sample from this distribution. This is done by introducing a set of latent variables
Z = {z1, . . . , zM}, where zm ∈ Rdz and rewriting the conditional log-probability log p(X|G) as

log p(X|G) = log

∫
p(X|Z,G)p(Z|G)dZ, (5)

The marginal log-probability in Equation 5 is generally intractable to compute, and we instead max-
imize the stochastic approximation to its lower bound, as is standard practice in problems involving
variational inference:

log p(X|G) ≥EZ∼Q(Z|G,X)[log p(X|Z,G)︸ ︷︷ ︸
(b) likelihood

]− KL(Q(Z|G,X)︸ ︷︷ ︸
(c) posterior

‖P (Z|G)︸ ︷︷ ︸
(a) prior

) (6)

≈ 1

K

K∑
k=1

log p(X|Zk, G)− KL(Q(Z|G,X)‖P (Z|G)), (7)

where Zk is the k-th sample from the (approximate) posterior distribution Q above. We assume that
we can compute the KL divergence analytically, for instance by constructing Q and P to be normal
distributions.

2



Published as a workshop paper at ICLR 2019

Modeling the Graph using a Message Passing Neural Network We use a message passing neu-
ral network (MPNN) (Gilmer et al., 2017), a variant of a graph neural network (Scarselli et al., 2009;
Bruna et al., 2014), which operates on a graphG directly and is invariant to graph isomorphism. The
MPNN consists of L layers. At each layer l, we update the hidden vector h(vi) ∈ Rdh of each node
and hidden matrix h(eij) ∈ Rdh×dh of each edge using the equation

hl(vi) = GRU(hl−1(vi), J(h
l−1(vi), h

l−1(vj 6=i), h(ei,j 6=i)), (8)

where J is a linear one layer neural network that aggregates the information from neighboring nodes
according to its hidden vectors of respective nodes and edges. GRU is a gated recurrent network
that combines the new aggregate information and its corresponding hidden vector from previous
layer (Cho et al., 2014). The weights of the message passing function J and GRU are shared across
the L layers of the MPNN. Details on using MPNN to parametrize prior, likelihood and posterior
distributions are described in Appendix A

Training and Inference With the choice of the Gaussian latent variables zi, we can use the repa-
rameterization trick (Kingma & Welling, 2014) to compute the gradient of the stochastic approxi-
mation to the lower bound in Equation 7 with respect to all the parameters of the three distributions.
This property allows us to train our model on a large dataset using stochastic gradient descent (SGD).
However, there are two major considerations that must be made before training this model on a large
molecule database. These considerations are described in Appendix B.

Learning a conditional variational autoencoder above corresponds to the first stage of conformation
generation, that is, the stage of energy function construction. Once the energy function is con-
structed, we need to sample multiple conformations from the Gibbs distribution defined using the
energy function, which is logP (X|G) in Equation 5. Our parameterization of the Gibbs distribution
using a directed graphical model (Pearl, 1986) allows us to efficiently sample from this distribution.
We first sample from the prior distribution, Z̃ ∼ P (Z|G), and then sample from the likelihood dis-
tribution, X̃ ∼ P (X|Z̃, G). In practice, we fix the output variance σi,j of the likelihood distribution
to be 1 and take the mean set {µ1, . . . , µM} as a sample from the model.

2.2 RELATED GRAPH NEURAL NETWORKS

Graph neural networks have recently been used to obtain latent representations of molecules and
to generate molecules. One such approach involves reducing the entire molecular graph to a single
vector latent variable (Simonovsky & Komodakis (2018)). This method requires the network to learn
how many atoms to generate, and which of and how these atoms are connected. Since we do not
need to generate molecules and always have knowledge of the complete molecular graph, we choose
not to reduce our graph to a single vector latent variable. In another work, the authors propose a
model in which both the edges and nodes are given latent representations (Kipf et al. (2018)). We
choose not to use edge latent representations as molecular geometry is ultimately defined by the
positions of the atoms, and is only related to the bonds between atoms through the bonds’ influence
on the positions of the atoms. Therefore we only learn a linear embedding for the edges. Junction
tree variational autoencoders have also been used for molecular graph generation (Jin et al. (2018)).
This method also involves a producing a latent representation of a graph, as well as for a junction
tree containing predefined chemical groups as elements. If such groups have similar geometry in
different situations, it may be worth investigating a variation of this method in combination with our
method in future work. This would ensure that the network would not have to learn, for example,
the positions of atoms in a benzene ring.

3 EXPERIMENTAL SETUP

Data We experimentally verify the effectiveness of the proposed approach using three databases of
molecules: QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014), COD (Gražulis et al., 2012)
and CSD (Groom et al., 2016). These datasets are selected as they possess distinct properties from
each other, which allows us to carefully study various aspects of the proposed approach. Although,
there is an overlap between COD and CSD databases, since both of these databases were based on
published crystallography data. In general, COD/CSD databases contain larger molecules compared
to QM9 database. More details describing characteristics of databases are described in Appendix C.

3



Published as a workshop paper at ICLR 2019

ETKDG + Force Field CVGAE CVGAE + Force Field
Dataset UFF MMFF MMFF

QM9 success per test set 96.440% 96.440% 100% 99.760%
success per molecule 98.725% 98.725% 100% 98.684%

mean 0.425 0.415 0.390 0.367
std. dev. 0.176 0.189 0.017 0.074

best 0.126 0.092 0.325 0.115

COD success per test set 99.133% 99.133% 100% 95.367%
success per molecule 99.627% 99.627% 100% 99.071%

mean 1.389 1.358 1.331 1.656
std. dev. 0.407 0.415 0.099 0.425

best 0.429 0.393 1.206 0.635

CSD success per test set 97.400% 97.400% 100% 99.467%
success per molecule 99.130% 99.130% 100% 97.967%

mean 1.537 1.488 1.506 1.833
std. dev. 0.421 0.418 0.115 0.434

best 0.508 0.478 1.343 0.784

Table 1: Number of successfully processed molecules in the test set (success per test set ↑), num-
ber of successfully generated conformations out of 100 (success per molecule ↑), median of mean
RMSD (mean ↓), median of standard deviation of RMSD (std. dev. ↓) and median of best RMSD
(best ↓) per molecule on QM9, COD and CSD datasets.

Evaluation In principle, the quality of the sampled conformations should be evaluated based on
their molecular energies, for instance by quantum methods such as density functional theory (DFT)
(Hautier et al., 2012), which is often more accurate than force field methods (Kanal et al., 2017).
However, the computational complexity of the DFT calculation is superlinear with respect to the
number of electrons in a molecule, and so is often impractical (Ratcliff et al., 2017). Instead, we fol-
low prior work on conformation generation (Hawkins, 2017) and evaluate the baselines and proposed
method using the root-mean-square deviation (RMSD) of the heavy atoms between a ground-truth
conformation and a predicted conformation. RMSD is defined as the square root of the mean square
error and is fast and simple to calculate.

Baselines and Proposed Approach As a point of reference, we minimize a force field starting
from a conformation created using ETKDG (Riniker & Landrum, 2015). We test both UFF and
MMFF, and respectively call the resulting approaches ETKDG+UFF and ETKDG+MMFF. We
use the implementations in RDKit 1 with the default hyperparameters. There are two modes of
inference with the proposed approach. The first approach is to sample from a trained conditional
variational graph autoencoder by first sampling from the prior distribution and taking the mean
vectors from the likelihood distribution; we refer to this as CVGAE. We can then use these samples
further as initializations of MMFF minimization; we refer to this as CVGAE+MMFF. The latter
approach can be thought of as a trainable approach to initializing a conformation in place of DG or
ETKDG. Details of hyperparameters of proposed model are described in Appendix D

Results When evaluating each method, we first sample 100 conformations per molecule for each
method in the test set. We can make several observations from Table 1. First, compared to other
methods, our proposed CVGAE always succeeds at generating the specified number of conforma-
tions for any of the molecules in the test set. Since all other evaluated approaches were unsuccessful
at generating at least one conformation for a very small number of test molecules, we report re-
sults for the molecules for which all evaluated methods generated at least one conformation. We
report the median of the mean of the RMSD, the median of the standard deviation of the RMSD and
the median of the best (lowest) RMSD among all generated conformations for each test molecule.
Across all three datasets, every evaluated method achieves roughly the same median of the mean
RMSD. More importantly, the standard deviation of the RMSD achieved by CVGAE is significantly
lower than that achieved by ETKDG + Force Field. After the initial generation stage, conforma-

1https://github.com/rdkit/rdkit/, version 2018.09.1

4

https://github.com/rdkit/rdkit/


Published as a workshop paper at ICLR 2019

tions are usually further evaluated and optimized by running the computationally expensive DFT
optimization. Reducing the standard deviation can lower the number of conformations on which
DFT optimization has to be run in order to achieve a valid conformation. On the other hand, the
best RMSD achieved by ETKDG + UFF/MMFF methods is lower than that achieved by CVGAE.
Using MMFF initialized by CVGAE (CVGAE + MMFF) instead of ETKDG (ETKDG + MMFF)
improves the mean results on the QM9 dataset for CVGAE, and yields a lower standard deviation
and similar best RMSD compared to ETKDG + MMFF. Unfortunately, CVGAE + MMFF worsens
the results achieved by CVGAE alone on the COD and CSD datasets.

We also report the diversity of conformations generated by all evaluated methods in Table 2 (in
Appendix). Diversity is measured by calculating the mean and standard deviation of the pairwise
RMSD between each pair of generated conformations per molecule. Overall, we can see that de-
spite having a smaller median of standard deviation of RMSD between generated conformations and
ground-truth conformations, CVGAE doesn’t collapse to generating extremely similar conforma-
tions. Although, CVGAE generates relatively less diverse samples compared to ETKDG + MMFF
baseline on all datasets. The conformations of molecules generated by CVGAE + MMFF are less
diverse on the QM9 dataset and more diverse on COD/CSD datasets compared to ETKDG + MMFF
baseline. More experimental results are described in Appendix E.

Discussion In this paper, we proposed a deep generative model for generating molecular geometry
(conformation) given molecule graph. In contrast to traditional methods, the energy function or
probability distribution of molecule is estimated directly from data using the latest techniques from
representation learning on graphs and variational inference. We show that conformations generated
by our model are on average far more likely to be close to the ground-truth conformation compared
to those generated by conventional force field methods without generating geometrically similar
conformations. On QM9 dataset, we show that the best of both methods can be combined by using
the conformations generated by the deep generative graph neural network as an initialization to the
force field method. Further work is necessary to investigate this combination as well as building
larger generative models on COD/CSD datasets.

REFERENCES

Jeffrey M. Blaney and J. Scott Dixon. Distance geometry in molecular modeling. Rev. Comput.
Chem., 1994.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In Proceedings of the 2nd International Conference on Learning
Representations, 2014.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pp. 1724–1734, 2014.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning, pp. 1263–1272, 2017.

Saulius Gražulis, Adriana Daškevič, Andrius Merkys, Daniel Chateigner, Luca Lutterotti, Miguel
Quiros, Nadezhda R. Serebryanaya, Peter Moeck, Robert T. Downs, and Armel Le Bail. Crystal-
lography open database (COD): An open-access collection of crystal structures and platform for
world-wide collaboration. Nucleic Acids Res., 40(D1):D420–D427, 2012.

Colin R. Groom, Ian J. Bruno, Matthew P. Lightfoot, and Suzanna C. Ward. The cambridge struc-
tural database. Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat., 72(2):171–179, 2016.

Thomas A. Halgren. Merck molecular force field. I. basis, form, scope, parameterization, and per-
formance of MMFF94. J. Comput. Chem., 17(5-6):490–519, 1996.

Geoffroy Hautier, Anubhav Jain, and Shyue Ping Ong. From the computer to the laboratory: Ma-
terials discovery and design using first-principles calculations. J. Mater. Sci., 47(21):7317–7340,
2012.

5



Published as a workshop paper at ICLR 2019

Paul C. D. Hawkins. Conformation generation: The state of the art. J. Chem. Inf. Model., 2017.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2323–2332, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/jin18a.html.

Ilana Y. Kanal, John A. Keith, and Geoffrey R. Hutchison. A sobering assessment of small-molecule
force field methods for low energy conformer predictions. Int. J. Quantum Chem., 2017.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: Moving beyond fingerprints. J. Comput.-Aided Mol. Des., 30(8):595–608, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the 2nd
International Conference on Learning Representations, 2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In Jennifer Dy and Andreas Kraus (eds.), Proceedings of the
35th International Conference on Machine Learning (ICML), volume 80 of Proceedings of Ma-
chine Learning Research. PMLR, 2018. URL http://proceedings.mlr.press/v80/
kipf18a.html.

Greg Landrum. Rdkit: Open-source cheminformatics. URL http://www.rdkit.org. (ac-
cessed December 18, 2018).

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Math. Program., 45(1-3):503–528, 1989.

Judea Pearl. Fusion, propagation, and structuring in belief networks. Artif. Intell., 29(3):241–288,
1986.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole Von Lilienfeld. Quan-
tum chemistry structures and properties of 134 kilo molecules. Sci. Data, 1:140022:1–7, 2014.

Bharath Ramsundar, Peter Eastman, Karl Leswing, Patrick Walters, and Vijay Pande. Deep Learning
for the Life Sciences. O’Reilly Media, 2019.

Anthony K. Rappé, Carla J. Casewit, K. S. Colwell, William A. Goddard III, and W. M. Skiff. UFF,
a full periodic table force field for molecular mechanics and molecular dynamics simulations. J.
Am. Chem. Soc., 114(25):10024–10035, 1992.

Laura E. Ratcliff, Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, and Luigi Gen-
ovese. Challenges in large scale quantum mechanical calculations. Wiley Interdiscip. Rev.-
Comput. Mol. Sci., 7(1):e1290, 2017.

Sereina Riniker and Gregory A. Landrum. Better informed distance geometry: Using what we know
to improve conformation generation. J. Chem. Inf. Model., 2015.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration of
166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf.
Model., 52(11):2864–2875, 2012.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Trans. Neural Netw., 20(1):61–80, 2009.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. CoRR, abs/1802.03480, 2018. URL http://arxiv.org/abs/
1802.03480.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15:
1929–1958, 2014.

6

http://proceedings.mlr.press/v80/jin18a.html
http://proceedings.mlr.press/v80/kipf18a.html
http://proceedings.mlr.press/v80/kipf18a.html
http://www.rdkit.org
http://arxiv.org/abs/1802.03480
http://arxiv.org/abs/1802.03480


Published as a workshop paper at ICLR 2019

A ARCHITECTURE OF THE CONDITIONAL VARIATIONAL GRAPH
AUTOENCODER

A diagram of the model is shown in Figure 1.

Prior Parameterization We use the MPNN described in 2.1 to model the prior distribution
P (Z|G) in Equation 6 (a). We initialize h0(vi) and h(eij) in Equation 8 as linear transformations
of the feature vectors vi and eij of the nodes and edges respectively:

h0(vi) = U prior
node vi; h(eij) = U prior

edge eij , (9)

where U prior
node and U prior

edge are matrices representing the linear transformations for the nodes and edges
respectively. The final hidden vector hL(vi) of each node is passed through a two layer neural
network with hidden size df , whose output h̃L(vi) is transformed into the mean and variance vectors
of a Normal distribution with a diagonal covariance matrix:

µi =W prior
µ h̃L(vi) + bprior

µ ; (10)

σ2
i = exp

{
W prior
σ h̃L(vi) + bprior

σ

}
, (11)

where W prior
µ and W prior

σ are the weight matrices and bprior
µ and bprior

σ are the bias terms of the trans-
formations. These are used to form the prior distribution:

logP (Z|G) =
N∑
i=1

3∑
j=1

− (µi,j − zi,j)2

2σ2
i,j

− log
√

2πσ2
i,j , (12)

where µi,j and σ2
i,j are the j-th components of the mean and variance vectors respectively. In other

words, we parameterize the prior distribution as a factorized Normal distribution factored over the
vertices and the dimensions in the 3-D coordinate.

Likelihood Parameterization We use a similar MPNN to model the likelihood distribution,
P (X|Z,G) in Equation 6 (b). The only difference is that this distribution is conditioned not only on
the molecular graph G = (V,E) but also on the latent set Z = {z1, . . . , zM}. We incorporate the
latent set Z by adding the linear transformation of the node feature vector vi to its corresponding
latent variable zi. This result is used to initialize the hidden vector:

h0(vi) = U likelihood
node vi + zi; h(eij) = U likelihood

edge eij , (13)

where U likelihood
node and U likelihood

edge are matrices representing the linear transformations for the nodes
and edges respectively. From there on, we run neural message passing as in Eqs. (8–11), with a
new set of parameters, θlikelihood, W likelihood

µ , blikelihood
µ , W likelihood

σ and blikelihood
σ . The final mean and

variance vectors are now three dimensional, representing the 3-D coordinates of each atom, and we
can compute the log-probability of the coordinates using Equation 12.

Posterior Parameterization As computing the exact posterior P (Z|G,X) is intractable, we re-
sort to amortized inference using a parameterized, approximate posterior Q(Z|G,X) in Equa-
tion 6 (c). We use a similar approach to our parameterization of the prior distribution above. How-
ever, we replace the input to the MPNN with the concatenation of an edge feature vector eij and the
corresponding distance (proximity) matrix D(X∗) of the ground-truth 3-D conformation X∗:

h(eij) = U posterior
edge

[
eij

D(x∗i )

]
. (14)

With a new set of parameters, θposterior, W
posterior
µ , bposterior

µ , W posterior
σ and bposterior

σ , and similarly to the
process in Eqs. (8–11), the MPNN outputs the mean and diagonal covariance of a normal distribution
for each latent variable zi. Linear weight embeddings of nodes Unode are shared between prior,
likelihood and posterior.

7



Published as a workshop paper at ICLR 2019

B TRAINING THE CONDITIONAL VARIATIONAL GRAPH AUTOENCODER

(1) Post-Alignment Likelihood An important property of conformation generation over a usual
problem of regression is that we must take into account rotation and translation. Let R be an align-
ment function that takes as input a a target conformation and a predicted conformation, aligns the
reference conformation to the predicted conformation and returns the aligned reference conforma-
tion. X̂ = R(X,X∗) is the conformation obtained by rotating and translating the reference confor-
mation X∗ to have the smallest distance to the predicted conformation X according to a predefined
metric such as root-mean-square deviation (RMSD):

RMSD(X̂,X∗) =

√√√√ 1

M

M∑
i=1

‖x̂i − x∗i ‖2. (15)

This alignment function R is selected according to the problem at hand, and we present below its
use in a general form without exact specification.

We implement this invariance to rotation and translation by parameterizing the output of the likeli-
hood distribution above to be aligned to the target molecule. That is,

log p(X|G,Z) =
M∑
i=1

3∑
j=1

−
(µi,j − x̂∗i,j)2

2σ2
i,j

− log
√
2πσ2

i,j , (16)

where x̂∗i is the coordinate of the i-th atom aligned to the mean conformation {µ1, . . . , µN}. That
is,

{x̂∗1, . . . , x̂∗M} = R({µ1, . . . , µM} , X∗). (17)

In other words, we rotate and translate the reference conformation X∗ to be best aligned to the pre-
dicted conformation (or its mean) before computing the log-probability. This encourages the model
to assign high probability to a conformation that is easily aligned to the reference conformation X∗,
which is precisely the goal of maximum log-likelihood.

(2) Unconditional Prior Regularization The second term in the lower bound in Equation 6,
which is the KL divergence between the approximate posterior and prior, does not have a point
minimum but an infinitely long valley consisting of minimum values. Consider the KL divergence
between two univariate Normal distributions:

KL(N (µ1, σ
2
1)‖N (µ2, σ

2
2)) = log

σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
. (18)

When both distributions are shifted by the same amount, the KL divergence remains unchanged.
This could lead to a difficulty in optimization, as the means of the posterior and prior distributions
could both diverge.

In order to prevent this pathological behavior, we introduce an unconditional prior distribution P (Z)
which is a factorized Normal distribution:

P (Z) =

M∏
i=1

N (zi|0, I), (19)

where N computes a Normal probability density, and I is a dz × dz identity matrix. We minimize
the KL divergence between the original prior distribution P (Z|G) and this unconditional prior dis-
tribution P (Z) in addition to maximizing the lowerbound, leading to the following final objective
function for each molecule:

L = log p(X|Z1, G)− KL(Q(Z|G,X)‖P (Z|G))− α · KL(P (Z|G)‖P (Z)), (20)

where we assume K = 1 and introduce a coefficient α ≥ 0.

8



Published as a workshop paper at ICLR 2019

MPNN MPNN

MPNN

𝒩(0, 1)

Align

x̃1

x̃m

x1

xm

G = (V, E)

x*1

x*m

X
X*

X̃

z1

zm

μprior1

μpriorm

σprior1

σpriorm

σpostm

σpost1

μpostm

μpost1

Figure 1: A diagram of the CVGAE model. Yellow arrows show the training process, green arrows
show the testing process and double headed red arrows show directly interacting terms in the loss
function. Clear, rounded boxes are vectors. The input and output at test time are in highlighted,
green boxes.

C DATA

QM9 The filtered QM9 dataset contains 133,015 molecules, each of which contains up to 9 heavy
atoms of types C, N, O and F. Each molecule is paired with a ground-truth conformation obtained by
optimizing the molecular geometry with density functional theory (DFT) at the B3LYP/6-31G(2df,p)
level of theory, which implies that these ground-truth conformations may not necessarily correspond
to the lowest energy configurations of the molecules. We hold out separate 5,000 and 5,000 randomly
selected molecules as validation and test sets, respectively.

COD We use the organic part of the COD dataset. We further filter out any molecule that contains
more than 50 heavy atoms of types B, C, N, O, F, Si, P, S, Cl, Ge, As, Se, Br, Te and I. This
results in 66,663 molecules, out of which we hold out separate 3,000 and 3,000 randomly selected
ones respectively for validation and test purposes. Ground-truth conformations are voluntarily con-
tributed to the dataset and are often determined either experimentally or by DFT (Hautier et al.,
2012).

CSD Similarly to COD, we remove any molecule that contains more than 50 heavy atoms, re-
sulting in a total of 236,985 molecules. This dataset (Groom et al., 2016) contains organic and
metal-organic crystallographic structures which have been verified experimentally. The atom types
in this dataset are S, N, P, Be, Tc, Xe, Br, Rh, Os, Zr, In, As, Mo, Dy, Nb, La, Te, Th, Ga, Tl, Y,
Cr, F, Fe, Sb, Yb, Tb, Pu, Am, Re, Eu, Hg, Mn, Lu, Nd, Ce, Ge, Sc, Gd, Ca, Ti, Sn, Ir, Al, K,
Tm, Ni, Er, Co, Bi, Pr, Rb, Sm, O, Pt, Hf, Se, Np, Cd, Pd, Pb, Ho, Ag, Mg, Zn, Ta, V, B, Ru, W,
Cl, Au, U, Si, Li, C and I. We hold out separate 3,000 and 3,000 randomly selected molecules for
validation and test purposes respectively. See Figure 2 for more detailed characteristics of datasets.

9



Published as a workshop paper at ICLR 2019

Distinct atoms
in dataset

Distinct atoms
per molecule

0

20

40

60

80
QM9
COD
CSD

(a) Diversity of atoms overall and per molecule

Bonds per molecule Rotatable bonds
per molecule

0

10

20

30

40
QM9
COD
CSD

(b) Number and rotatability of bonds per
molecule

Molecular mass0

100

200

300

400

500 QM9
COD
CSD

(c) Molecular mass per molecule

Fraction of molecules with
at least one pair of symmetric atoms

0.0

0.2

0.4

0.6
QM9
COD
CSD

(d) Proportion of molecules with symmetry

Figure 2: Dataset Characteristics: information regarding the atoms, bonds, molecular mass and
symmetry of molecules in each dataset.

D HYPERPARAMETERS

We build one conditional variational graph autoencoder for each dataset. We use dh = 50 hidden
units at each layer of neural message passing (Eq. 8) in each of the three MPNNs corresponding to
the prior, likelihood and posterior distributions. We use df = 100 in the two layer neural network
that comes after the MPNN. As described earlier, we fix the variance of the output in the likelihood
distribution to 1. We use L = 3 layers per network for QM9 and L = 5 layers per network for
COD and CSD. We chose these hyperparameter values by carrying out a grid-search and choosing
the values that had the best performance on the validation set. For all models, we use dropout
(Srivastava et al., 2014) at each layer of the neural network that comes after the MPNN with a
dropout rate of 0.2 to regularize learning. We set the coefficient α in Equation 20 to 10−5. We train
each model using Adam (Kingma & Ba, 2015) with a fixed learning rate of 3 × 10−4. All models
were trained with a batch size of 20 molecules on 1 Nvidia GPU with 12 GB of RAM.

D.1 HYPERPARAMETER SEARCH

Below are the hyperparameters we tried for the QM9 and COD datasets. We picked the hyperpa-
rameters to ensure that a model trained with a batch size of 20 molecules could fit on 1 GPU with
12 GB of RAM.

We experimented with the following values of hyperparameters on the QM9 dataset: dh = [25, 50],
df = [50, 100]. The number of MPNN layers L was fixed to 3 according to previous preliminary
experiments. On Figure 3c we can see that the model with dh = 50 and df = 100 significantly
outperforms models with a smaller number of hidden units.

On the COD dataset we experimented with the following values of hyperparameters: dh = [25, 50],
df = [50, 100] and number of MPNN layers L = [3, 5]. In Figure 3a we can see that the model
with 5 MPNN layers slightly outpeforms the model with 3 MPNN layers. Similarly to the QM9

10



Published as a workshop paper at ICLR 2019

0 100 200 300 400 500
Number of Epochs

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

M
ea

n 
R

M
S

D

Dim_h=25, Dim_f=50, MPNN_l=3
Dim_h=25, Dim_f=50, MPNN_l=5

(a) COD dataset

0 100 200 300 400 500
Number of Epochs

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

M
ea

n 
R

M
S

D

Dim_h=25, Dim_f=100, MPNN_l=5
Dim_h=50, Dim_f=100, MPNN_l=5
Dim_h=50, Dim_f=50, MPNN_l=5
Dim_h=25, Dim_f=50, MPNN_l=5

(b) COD dataset

0 200 400 600 800 1000
Number of Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
ea

n 
R

M
S

D

Dim_h=50, Dim_f=100, MPNN_l=3
Dim_h=25, Dim_f=100, MPNN_l=3
Dim_h=50, Dim_f=50, MPNN_l=3
Dim_h=25, Dim_f=50, MPNN_l=3

(c) QM9 dataset

Figure 3: Investigation of number of different hyperparameters on QM9 and COD datasets over
different number of epochs. Mean RMSD over number of epochs of best performing model on valid
set of corresponding dataset. Mean RMSD was calculated given 10 conformations per molecule.

0 500 1000 1500 2000 2500 3000
Number of Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n 
R

M
S

D

Dim_h=50, Dim_f=100, MPNN_l=3

(a) QM9 dataset

0 500 1000 1500 2000
Number of Epochs

1.4

1.6

1.8

2.0

2.2

M
ea

n 
R

M
S

D

Dim_h=50, Dim_f=100, MPNN_l=5

(b) COD dataset

Figure 4: Performance of the best performing model over the number of epochs. Mean RMSD over
number of epochs of best performing model on valid set of corresponding dataset. Mean RMSD
was calculated given 10 conformations per molecule.

ETKDG + UFF ETKDG + MMFF CVGAE CVGAE + MMFF
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Se
co

nd
s p

er
 m

ol
ec

ul
e

Efficiency (sec/mol) on QM9 dataset

(a) QM9 dataset

ETKDG + UFF ETKDG + MMFF CVGAE CVGAE + MMFF
Method

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Se
co

nd
s p

er
 m

ol
ec

ul
e

Efficiency (sec/mol) on COD dataset

(b) COD dataset

Figure 5: Computational efficiency of various approaches on QM9 and COD datasets

dataset, we can see in Figure 3b that a larger number of hidden units results in significantly faster
convergence and better performance.

We selected the model with the best hyperparameter values given by our grid-search. Figure 4 shows
the RMSD of this model on the validation set as a function of number of epochs on the QM9 and
COD datasets.

11



Published as a workshop paper at ICLR 2019

Dataset ETKDG + MMFF CVGAE CVGAE + MMFF

QM9 mean 0.400 0.106 0.238
std. dev. 0.254 0.061 0.209

COD mean 1.148 0.239 1.619
std. dev. 0.699 0.181 0.537

CSD mean 1.244 0.567 1.665
std. dev. 0.733 0.339 0.177

Table 2: Conformation Diversity. Mean and std. dev. represents the corresponding mean and
standard deviation of pairwise RMSD between at most 100 generated conformations per molecule.

E EXPERIMENTAL RESULTS (CONT.)

The computational efficiency of each of the evaluated approaches on the QM9 and COD datasets
is shown in Figure 5. For consistency, we generated one conformation for one molecule at a time
using each of the evaluated methods on an Intel(R) Xeon(R) E5-2650 v4 CPU. On the QM9 dataset,
CVGAE is 2× more efficient than ETKDG + UFF/MMFF, while CVGAE + MMFF is slightly
slower than ETKDG + UFF/MMFF. On the COD dataset, which contains a larger number of atoms
per molecule, CVGAE is almost 10× as fast as ETKDG + UFF/MMFF, while CVGAE + MMFF is
about 2× as fast as ETKDG + UFF/MMFF. This shows that CVGAE scales much better than the
baseline ETKDG + UFF/MMFF methods as the size of the molecule grows.

Figures 6 and 7 visualize the median, standard deviation and best RMSD results as a function of
the number of heavy atoms in a molecule on the QM9 and COD/CSD datasets respectively. For all
approaches, we can see that the best and median RMSD both increase with the number of heavy
atoms. The standard deviation of the median RMSD for CVGAE and CVGAE + MMFF is lower
than that for ETKDG + MMFF across molecules of almost all sizes. The standard deviation of the
best RMSD is slightly higher for CVGAE and CVGAE + MMFF than for ETKDG + MMFF on
molecules with at most 12 atoms, but is lower for larger atoms, particularly for CVGAE. Overall,
CVGAE yields a lower or similar median RMSD compared to ETKDG + CVGAE across molecules
of all sizes but a lower standard deviation, whereas ETKDG + MMFF provides a lower best RMSD
particularly for larger molecules observed in the COD/CSD datasets.

Figures 8 and 9 qualitatively compare the results of CVGAE against MMFF and CVGAE + MMFF
against CVGAE respectively. For each dataset, each figure shows the three molecules for which
the first method in each figure outperforms the second method by the greatest amount, and the
three molecules for which the second method outperforms the first by the greatest amount. The
reference molecules are shown alongside the conformations resulting from each of the methods for
comparison.

We can see some general trends from both these figures. The conformations produced by the neural
network are qualitatively much more similar to the reference in the case of the QM9 dataset than
in the cases of the COD and CSD datasets. In the case of the COD and CSD datasets, the CVGAE
predictions appear to be squashed or compressed in comparison to the reference molecules. For
example, in almost every case we can see the absence of visible rings and the absence of bonds
protruding from the lengthwise dimension of the molecule. At the same time we can see that on
COD and CSD, CVGAE does better than ETKDG + MMFF in cases where ETKDG + MMFF
creates loops and protrusions in the wrong places.

E.1 MOLECULAR FEATURES

To represent molecules as graph-structured data, each of the nodes and edges in the molecule is
represented using the features described in Tables 3 and 4, according to related literature (Kearnes
et al., 2016; Ramsundar et al., 2019; Gilmer et al., 2017). We only consider heavy atoms, and do
not consider hydrogen atoms as explicit nodes i.e. hydrogen atoms are represented as part of the
input features and their coordinates are not predicted by the neural network. In Table 4, the first four

12



Published as a workshop paper at ICLR 2019

0 10 20 30 40 50
Number of heavy atoms

0.0

0.5

1.0

1.5

2.0

2.5

Be
st

 R
M

SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

(a) Mean of best RMSD

10 20 30 40 50
Number of heavy atoms

0.0

0.2

0.4

0.6

0.8

1.0

St
d 

of
 b

es
t R

M
SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

(b) St. dev. of best RMSD

10 20 30 40 50
Number of heavy atoms

0

1

2

3

M
ed

ia
n 

RM
SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

(c) Mean of median RMSD

10 20 30 40 50
Number of heavy atoms

0.0

0.2

0.4

0.6

0.8

1.0
St

d 
of

 m
ed

ia
n 

RM
SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

(d) St. dev. of median RMSD

10 20 30 40 50
Number of heavy atoms

0

1

2

3

Be
st

 R
M

SD

CVGAE
ETKDG + MMFF

(e) Best RMSD with uncertainty bounds

10 20 30 40 50
Number of heavy atoms

0

1

2

3

4

M
ed

ia
n 

RM
SD

CVGAE
ETKDG + MMFF

(f) Median RMSD with uncertainty bounds

Figure 6: This figure shows the means and standard deviations of the best and median rmsds on
the union of COD and CSD datasets as a function of number of heavy atoms. The molecules were
grouped by number of heavy atoms, and the mean and standard deviation of the median and best
RMSDs were calculated for each group to obtain these plots. Groups at the left hand side of the
graph with less than 1% of the mean number of molecules per group were omitted.

13



Published as a workshop paper at ICLR 2019

7 8 9
Number of heavy atoms

0.10

0.15

0.20

0.25

0.30

0.35

Be
st

 R
M

SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

(a) Mean of best RMSD

7 8 9
Number of heavy atoms

0.16

0.18

0.20

0.22

0.24

St
d 

of
 b

es
t R

M
SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

(b) St. dev. of best RMSD

7 8 9
Number of heavy atoms

0.35

0.40

0.45

M
ed

ia
n 

RM
SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

(c) Mean of median RMSD

7 8 9
Number of heavy atoms

0.30

0.35

0.40
St

d 
of

 m
ed

ia
n 

RM
SD

CVGAE
ETKDG + MMFF
CVGAE + MMFF

(d) St. dev. of median RMSD

7 8 9
Number of heavy atoms

0.0

0.2

0.4

0.6

Be
st

 R
M

SD

CVGAE
ETKDG + MMFF

(e) Best RMSD with uncertainty bounds

7 8 9
Number of heavy atoms

0.0

0.2

0.4

0.6

0.8

M
ed

ia
n 

RM
SD

CVGAE
ETKDG + MMFF

(f) Median RMSD with uncertainty bounds

Figure 7: This figure shows the means and standard deviations of the best and median RMSDs on the
QM9 dataset as a function of number of heavy atoms. The molecules were grouped by number of
heavy atoms, and the mean and standard deviation of the median and best RMSDs were calculated
for each group to obtain these plots. Groups at the left hand side of the graph with less than 1% of
the mean number of molecules per group were omitted.

14



Published as a workshop paper at ICLR 2019

(a) QM9 greatest difference in favour of neural
network predictions

(b) QM9 greatest difference in favour of ETKDG
+ MMFF predictions

(c) COD greatest difference in favour of neural
network predictions

(d) COD greatest difference in favour of ETKDG
+ MMFF predictions

(e) CSD greatest difference in favour of neural
network predictions

(f) CSD greatest difference in favour of ETKDG
+ MMFF predictions

Figure 8: This figure shows the three molecules in each dataset for which the differences between
the RMSDs of the neural network predictions and the baseline MMFF predictions were greatest
in favour of the neural network predictions (max (RMSDCV GAE − RMSDETKDG+MMFF )),
and the three for which this difference was greatest in favour of the ETKDG + MMFF predictions
(max (RMSDETKDG+MMFF − RMSDCV GAE)). The top row of each subfigure contains the
reference molecules, the middle row contains the neural network predictions and the bottom row
contains the conformations generated by MMFF using ETKDG as initialization.

15



Published as a workshop paper at ICLR 2019

(a) QM9 greatest improvement
(b) QM9 greatest deterioration

(c) COD greatest improvement (d) COD greatest deterioration

(e) CSD greatest improvement (f) CSD greatest deterioration

Figure 9: This figure shows the three molecules in each dataset whose RMSD decreased the most and
the three whose RMSD increased the most on applying MMFF to the conformations predicted by
the neural network. The top row of each subfigure contains the reference molecules, the middle row
contains the neural network predictions and the bottom row contains the conformations generated
by applying MMFF to the neural network predictions.

16



Published as a workshop paper at ICLR 2019

feature type dimension
atom type one-hot (possible heavy atoms) vary
atomic number integer 1
chirality one-hot (R, S) 2
is aromatic binary 1
hybridization one-hot (sp, sp2, sp3, sp3d1, sp3d2) 5
degree integer 1
formal charge integer 1
no. hydrogens integer 1
no. radical electrons integer 1
implicit valence integer 1
no. rings for each ring size integer (ring sizes 3, 4, 5, 6, 7, 8) 6
total > 20

Table 3: Node features.

feature type dimension
bond type (if bond) one-hot (single, double, triple, aromatic) 4
stereochemistry (if bond) one-hot (E, Z) 2
is conjugated (if bond) binary 1
is in ring (if bond) binary 1
is in same ring binary 1
graph distance (shortest path) integer 1
total 10

Table 4: Edge features.

edge features are only calculable if the corresponding atom pair is bonded, while the last two edge
features are calculable for every atom pair. All features are generated using RDKit (Landrum).

17


	Introduction
	Deep Generative Model for Molecular Geometry
	Conditional Variational Graph Autoencoders
	Related Graph Neural Networks

	Experimental Setup
	Architecture of the Conditional Variational Graph Autoencoder
	Training the Conditional Variational Graph Autoencoder
	Data
	Hyperparameters
	Hyperparameter Search

	Experimental Results (cont.)
	Molecular Features


