
Accepted as a workshop paper at Representation Learning on Graphs and Manifolds @ ICLR 2019

SIMULATING EXECUTION TIME OF TENSOR PRO-
GRAMS USING GRAPH NEURAL NETWORKS

Jakub M. Tomczak∗ , Romain Lepert∗& Auke Wiggers∗
Qualcomm AI Research†
Qualcomm Technologies Netherlands B.V.
{jtomczak, romain, auke}@qti.qualcomm.com

ABSTRACT

Optimizing the execution time of tensor program, e.g., a convolution, involves
finding its optimal configuration. Searching the configuration space exhaustively
is typically infeasible in practice. In line with recent research using TVM, we pro-
pose to learn a surrogate model to overcome this issue. The model is trained on an
acyclic graph called an abstract syntax tree, and utilizes a graph convolutional net-
work to exploit structure in the graph. We claim that a learnable graph-based data
processing is a strong competitor to heuristic-based feature extraction. We present
a new dataset of graphs corresponding to configurations and their execution time
for various tensor programs. We provide baselines for a runtime prediction task.

1 INTRODUCTION

Current deep learning frameworks, such as TensorFlow, PyTorch, allow to optimize a computational
graph representation using, e.g., auto differentiation and memory management (Abadi et al., 2016;
Paszke et al., 2017). However, they do not tackle optimization of hardware-specific operator-level
transformations, but rely on manually tuned and vendor-specific operator libraries. Thus, there is
room to further improve a computational graph by optimizing transformations for specific hardware.

Recently, this gap has been filled by TVM, a compiler framework that allows both graph- and
operator-level optimization in an end-to-end manner (Chen et al., 2018a). TVM specifies a configu-
ration for an operator, e.g., a specific way of performing a convolution, and compiles the resulting
tensor program to a target hardware. As a consequence, for each new workload/operator, optimiza-
tion over a new configuration space must be carried out. This results in a hard optimization problem,
e.g., for Nvidia GPU the search space of a single operator consists of more than 106 configurations.

Recent efforts overcome this issue by learning how to optimize tensor programs from data (Chen
et al., 2018b). Instead of running an exhaustive search over an impractically large search space, a
surrogate model is trained to predict runtime for a given configuration. This model is in turn used to
select the configuration that minimizes the runtime. (Chen et al., 2018b) utilizes XGBoost (Chen &
Guestrin, 2016) and TreeGRU (Tai et al., 2015) as surrogate models.

Contribution Similar to (Chen et al., 2018b), we represent a configuration of a tensor operator as
an abstract syntax tree (AST) (Allamanis et al., 2017), and extract node features using TVM. We
then train a Graph Neural Network (GraphNN) on the resulting graph as the surrogate model. We
claim that GraphNNs are a good fit, as, crucially, they preserve the graph structure of the AST and
allow propagating information among nodes. The contribution of the paper is threefold:

• We present a new problem for GraphNNs: predicting the execution time of tensor programs from
their corresponding AST. For this purpose, we gathered a new dataset and we propose to use it
as a new application in the GraphNN community.1 This is the main contribution of the paper.

∗All authors contributed equally.
†Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
1The dataset will be released soon, please contact romain@qti.qualcomm.com for further details.

1



Accepted as a workshop paper at Representation Learning on Graphs and Manifolds @ ICLR 2019

e(·)

e(·)

e(·)

e(·)

e(·)

g(·)

... ρ(·) h(·) y

Figure 1: A schematic presentation of our approach: First, each node is transformed by a shared
encoder (green rectangle), then a graph convolutional network is used to propagate information
between nodes (cyan rectangle). Finally, all nodes are aggregated and a prediction y is made.

• We propose to use a graph neural network as a surrogate model of a compiler. We claim that it is
important to use a learnable graph data transformation rather than a fixed feature extractor, e.g.,
context relation features (Chen et al., 2018b).

• We perform experiments on the newly proposed dataset and provide baseline results for a cross-
workload prediction task.

Related work GraphNNs have been proven to be powerful in many applications ranging from
chemistry and life sciences (De Cao & Kipf, 2018; Duvenaud et al., 2015; Gonczarek et al., 2018;
Zitnik et al., 2018) to social networks Davidson et al. (2018); Kipf & Welling (2017); Hamilton
et al. (2017); Veličković et al. (2017), where graph inputs represent chemical compounds or social
interactions among users. GraphsNNs find applications in other domains as well, such as geometric
modeling (Bronstein et al., 2017), recommendation systems (Berg et al., 2017), relational data and
knowledge graphs (Nickel et al., 2016; Schlichtkrull et al., 2018), and regression problems like
chemical properties prediction (Duvenaud et al., 2015; Li et al., 2018) and traffic prediction (Yu
et al., 2017). An interesting on-going research is on using these networks in generative settings
(De Cao & Kipf, 2018; Jin et al., 2018; Simonovsky & Komodakis, 2018).

(Chen et al., 2018b) introduced the idea of learning a surrogate model using the TVM framework.
We instead use GraphNNs in this context, and do not focus on runtime minimization yet.

2 PROBLEM FORMULATION

We consider the problem of learning an execution time simulator. That is, we aim to predict runtime
of a configuration x ∈ X on the target hardware, where X is a discrete configuration space. Impor-
tantly, we represent x as a graph corresponding to the abstract syntax tree (AST) of the configuration.
Let us define the runtime as a function y = f(x), y ∈ R+. The function f can be queried, however,
its analytical form is unknown. Our goal is to learn a surrogate model of the function f , denoted
by f̂ , such that we minimize a loss function `(y, f̂(x)) (e.g., `1-norm or, equivalently, the loga-
rithm of the Laplacian distribution). Assuming a collection of measurements D = {(xn, yn)}Nn=1,
a straightforward way to learn f̂ is to minimize the objective L(f̂ ;D) = 1

N

∑N
n=1 `

(
yn, f̂(xn)

)
.

3 DATASET

0 20 40 60 80 100
targets (ms)

0

200

400

600

800

1000

fre
qu

en
cy

Figure 2: The distribution of targets.

General information We collect data for the
operators defined in a ResNet18 (He et al.,
2016). The target hardware is an Intel Xeon
CPU E5-1620 v4 processor @ 3.50GHz, with
x86-64 instruction set. The ResNet18 architec-
ture defines twelve unique convolution work-
loads, i.e., there are twelve parameterizations
for the convolution operators in the network.
We show these in Table 1. For example, for
workload ’C1’, the convolution has 3 input fea-
ture maps of size 224×224, and has 64 output channels. We also show the number of configurations
(# configs) for each workload for the x86 target hardware. We performed all measurements using
TVM v0.5 (Chen et al., 2018a).

2



Accepted as a workshop paper at Representation Learning on Graphs and Manifolds @ ICLR 2019

Table 1: Parameters for each unique Conv2D workload in a ResNet18 for x86 CPU target.
Workload H W Cin Cout kernel stride padding dilation # configs

C1 224 224 3 64 (7, 7) (2, 2) (3, 3) (1, 1) 252
C2 56 56 64 64 (3, 3) (1, 1) (1, 1) (1, 1) 784
C3 56 56 64 64 (1, 1) (1, 1) (1, 1) (1, 1) 784
C4 56 56 64 128 (2, 2) (1, 1) (1, 1) (1, 1) 672
C5 56 56 64 128 (2, 2) (1, 1) (1, 1) (1, 1) 672
C6 28 28 128 128 (1, 1) (1, 1) (1, 1) (1, 1) 768
C7 28 28 128 256 (2, 2) (1, 1) (1, 1) (1, 1) 576
C8 28 28 128 256 (2, 2) (1, 1) (1, 1) (1, 1) 576
C9 28 28 256 256 (1, 1) (1, 1) (1, 1) (1, 1) 648
C10 28 28 256 512 (2, 2) (1, 1) (1, 1) (1, 1) 360
C11 28 28 256 512 (2, 2) (1, 1) (1, 1) (1, 1) 360
C12 28 28 512 512 (1, 1) (1, 1) (1, 1) (1, 1) 400

Feature representation The dataset contains 6,852 configurations. For each configuration, we
extract the corresponding AST that is represented by: an adjacency matrix A, a feature matrix F ,
the node types (e.g., for statement, hardware instructions) G for every node in the graph. We save
these matrices and the corresponding measured execution time y as tuples (A,F,G, y). The feature
extraction procedure follows the one for loop context features presented in (Chen et al., 2018b).

Distribution of target runtimes The distribution of execution times do not match a normal dis-
tribution, but instead resembles a mixture of Gaussians (see Figure 2). This poses two important
challenges: (i) the simulator needs to learn a representation for all modes, (ii) generalizing to com-
ponents of low probability is troublesome if these configurations correspond to unseen workload.

4 GRAPH NEURAL NETWORKS AS A SIMULATOR

In general, we can build a simulator f̂ in a similar manner as it is presented in (Zaheer et al., 2017):
f̂(x) = h

(
ρ
[
g
(
e(x1), e(x2), . . . , e(x2)

)])
. The surrogate model f̂ consists of four components:

• A function e(·) that encodes each node represented by raw features to a vector of a fixed size.
Weights of the encoder are shared across nodes.

• A feature propagation function g(·) that ensures feature information is propagated across nodes.

• An aggregation function ρ[·] that combines information from all nodes into a fixed-size vector.
Typically, it is implemented using sum or mean.

• A prediction function h(·) that takes as input the fixed-size aggregated feature vector and predicts
a scalar runtime y.

See Figure 1 for a visual representation of the surrogate model (the runtime simulator). Note that
while we implement the functions above as neural networks in order to ensure that the surrogate
model can be trained end-to-end using backpropagation, the four-stage framework allows us to plug
in other functions as well, as long as in- and output-constraints are met. Importantly, the propagation
function is implemented using graph convolutions (Duvenaud et al., 2015; Kipf & Welling, 2017).

5 EXPERIMENTS

5.1 SETUP

We investigate two classes of network architectures on the extracted dataset. The first class consists
of fully-connected layers and does not propagate information among nodes before aggregation. We
refer to this approach as MLP. The second class adds the propagation of the information using a
graph convolutional network (GCN). In both classes, the encoding function e(·) and the prediction
function h(·) are multi-layer perceptrons with ReLU activation. In all models we choose the aggre-
gation operation ρ[·] to be the average. Additionally, both network types encode the node type using
a learned embedding of 32-dimensional vectors, and concatenate the resulting embedding vector to

3



Accepted as a workshop paper at Representation Learning on Graphs and Manifolds @ ICLR 2019

0.2 0.4 0.6 0.8 1.0
Training subset (%)

1.0

1.5

2.0

2.5

3.0

L1
 (m

s)

MLP1 train
GCN1 train
MLP2 train
GCN2 train
MLP3 train
GCN3 train
Curve train

0.2 0.4 0.6 0.8 1.0
Training subset (%)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

L1
 (m

s)

MLP1 test
GCN1 test
MLP2 test
GCN2 test
MLP3 test
GCN3 test
Curve test

Figure 3: The final evaluation using `1 loss: (left) on training data, (right) on test data.

0 20 40 60 80 100
targets (ms)

20

10

0

10

20

30

er
ro

rs
 (p

re
d 

- t
ar

ge
t) 

(m
s)

0 20 40 60 80 100
targets (ms)

20

10

0

10

20

30
er

ro
rs

 (p
re

d 
- t

ar
ge

t) 
(m

s)

0 20 40 60 80 100
targets (ms)

20

10

0

10

20

30

er
ro

rs
 (p

re
d 

- t
ar

ge
t) 

(m
s)

Figure 4: Scatter plots of errors (y-axis) for targets (x-axis) on the test set where only 20% of training
data is available: (left) MLP, (center) GCN, (right) Curve.

the node features. The prediction function is composed of two fully-connected layers and the final
layer has no activation function. Finally, the prediction function is composed of two fully-connected
layers and the final layer has no activation function. For comparison, we also run a fixed feature
extractor, namely, context relation features (Chen et al., 2018b), with a learnable predictor on top.
We refer to this approach as ”Curve”. For more details, please see Table 2 in the supplementary
material. During training we use the Huber loss that is a composition of the `1 and `2 losses, and `1
for final evaluation. We use DGL package (Wang et al., 2018) for implementing graph convolutions.

We aim at evaluating the cross-workload generalization capability of the surrogate model. Such
a scenario corresponds to a real-life situation where we do not have access to all workloads. In
the experiment, workloads {C1, C2, C4, C8, C9, C12} are taken as given data and the remaining
workloads are used as test data. The rationale is to pick as varied workloads as possible. We split
given configurations into 80% of training data and 20% of validation data. Further, we consider a
couple of cases where we have a limited access to training data, namely, we learn models on 5%,
10%, 15%, 20%, 25%, 50%, 75% and, for completeness, 100% of the training set. This limitation
imitates the real-life situation where we do not have measurements for all configurations.

5.2 RESULTS AND DISCUSSION

We present a final evaluation on 5 cases with different training datasets in Figure 3. We observe that
GCN-based network architectures generalize to the unseen test data better than the models without
the graph convolution component. The Curve model performs on par with the best performing GCN
for 5% − 15% of training data, however, it generalizes poorly if more training data is available. To
further inspect the performance of the three methods we present differences between predictions and
targets in Figure 4. A closer inspection reveals that the GCN makes smaller mistakes in general and,
most importantly, for targets between 0 and 20. Note that accurate prediction of target in [0, 20] is
critical since the goal of TVM is to identify a configuration with the smallest target execution time.
We conjecture that the main reason for this difference is that the GCN is able to better exploit local
structure, as the MLP can only share information among nodes after the aggregation function has
been applied. Additionally, the results indicate that generalization to unseen workloads by training
on similar workloads is possible to some extent, which shows that the found representations likely
lend themselves well to transfer learning.

4



Accepted as a workshop paper at Representation Learning on Graphs and Manifolds @ ICLR 2019

6 FINAL REMARKS

In this paper, we have presented a new dataset for learning the runtime of tensor program config-
urations represented as graphs. We provided three baselines, namely, a neural network with mean
as the aggregation function, a GraphNN-based network that propagates information among nodes
before the aggregation, and a neural network trained on context relational features representing a
whole AST. Additionally, we showed that the GraphNN-based approach allows to obtain competi-
tive results to the fixed feature extractor. We believe that this new dataset and the presented task will
attract attention of the GraphNN community to the problem of learning tensor programs.

ACKNOWLEDGMENTS

We would like to thank Jinwon Lee for fruitful discussions and helpful remarks.

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In Symposium on Operating Systems Design and Implementation), pp.
265–283, 2016.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. arXiv preprint arXiv:1711.00740, 2017.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In KDD, pp.
785–794, 2016. doi: 10.1145/2939672.2939785. URL http://doi.acm.org/10.1145/
2939672.2939785.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q Yan, Leyuan Wang, Yuwei Hu,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm: end-to-end optimization stack for
deep learning. arXiv preprint arXiv:1802.04799, pp. 1–15, 2018a.

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. Learning to optimize tensor programs. In NeurIPS, pp. 3393–3404,
2018b.

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspheri-
cal variational auto-encoders. UAI, 2018.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In NIPS, pp. 2224–2232, 2015.

Adam Gonczarek, Jakub M Tomczak, Szymon Zaręba, Joanna Kaczmar, Piotr Dąbrowski, and
Michał J Walczak. Interaction prediction in structure-based virtual screening using deep learning.
Computers in Biology and Medicine, 100:253–258, 2018.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

5



Accepted as a workshop paper at Representation Learning on Graphs and Manifolds @ ICLR 2019

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. ICML, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. ICLR, 2017.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural
networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge
graphs. In AAAI, 2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic Web
Conference, pp. 593–607. Springer, 2018.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using
variational autoencoders. In ICANN, pp. 412–422. Springer, 2018.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. CoRR, abs/1503.00075, 2015. URL
http://arxiv.org/abs/1503.00075.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Minjie Wang, Lingfan Yu, Quan Gan, Da Zheng, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Junbo Zhao, Haibin Lin, Chao Ma, Damon Deng, Qipeng Guo, Hao Zhang, Jinyang
Li, Alexander J Smola, and Zheng Zhang. Deep graph library, 2018. URL http://dgl.ai3.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In NIPS, pp. 3391–3401, 2017.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

6


