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ABSTRACT

Image denoising is a fundamental task in signal processing. Recent works have
shown that data-driven approaches employing convolutional neural networks can
outperform classical model-based techniques. These methods can capture highly
complex image priors without the need to handcraft them. However, since these
methods are based on convolutional operations, they are only capable of exploit-
ing local similarities without taking into account non-local self-similarities, which
have been highly successful in model-based methods. In order to exploit both lo-
cal and non-local similarities, we introduce a graph-convolutional neural network
specifically designed for image denoising. The graph-convolutional layers allow
to dynamically construct neighborhoods in the feature space to detect spatially-
distant pixels which show latent correlations in the the hidden layers.

1 INTRODUCTION

Recovering a clean image from a noisy observation is a crucial problem in signal processing. In order
to address this problem, it is necessary to exploit prior knowledge about the structure of natural
images. In the past, the literature on this topic has mainly focused on developing hand-crafted
image priors that help to regularize this inverse problem. Popular methods that follow this approach
include sparse representations (Elad & Aharon, 2006), total variation methods (Rudin et al., 1992;
Pang & Cheung, 2017), and methods based on non-local self-similarities such as BM3D (Dabov
et al., 2007), or WNNM (Gu et al., 2014), which are among the most successful ones. However,
recent work (Zhang et al., 2017; Lefkimmiatis, 2018; Mao et al., 2016; Lehtinen et al., 2018) has
shown that a data-driven approach, which employs convolutional neural networks, can outperform
classical model-based techniques by capturing more complex and powerful image priors. Since
these methods are based on convolutional operations, their main limitation is the local nature of
the extracted features. Therefore, methods based on CNNs can only exploit local similarities and
they are unable to capture non-local self-similar patterns that were proven to be highly successful in
model-based methods.

In this work, we propose to overcome this limitation by employing a graph-convolutional neural
network. Graph convolution is a generalization of the traditional convolution operation to process
data with an irregular structure (Defferrard et al., 2016; Simonovsky & Komodakis, 2017; Kipf &
Welling, 2016). In particular, we employ graph-convolutional layers in order to define in a more
flexible way the neighborhood of each pixel. Using this approach, we can extract features that
depend not only on spatially-adjacent pixels, but also on spatially-distant pixels which show nev-
ertheless latent correlations by being close in the latent space. Notice that the proposed approach
defines non-locality in a different manner with respect to the non-local neural network proposed in
Wang et al. (2018) for video classification tasks, where the response at a position is computed by a
weighted average of the features at all positions. Instead, in this paper we introduce a graph structure
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Figure 1: GraphCNN denoiser. Colored blocks are defined in the leftmost part. C: 2D convolution,
R: leaky ReLU, GC: graph convolution (as in Fig.2), NLG: non-local graph construction (nearest
neighbors in feature space), BN: batch normalization.
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Figure 2: Graph-convolutional layer. Non-local aggregation block implements Eq. (1).

in order to select for each pixel only the most significant spatially-distant pixels, i.e. the closest in
the feature space. This allows us to have a receptive field that can be dynamically adapted to the
image characteristics. The obtained results show that the proposed graph-convolutional architecture
outperforms traditional convolutional neural network for the denoising task.

2 PROPOSED METHOD

In this section, we present the proposed architecture, called GraphCNN, to perform image denois-
ing. An overview of the network is shown in Fig. 1. At a high-level, the network is composed of
a sequence of graph-convolutional layers followed by batch normalization and leaky ReLU nonlin-
earities. The first part of the network is composed of a preprocessing block with parallel branches,
reminiscent of similar constructions in Szegedy et al. (2015) and Divakar & Babu (2017). The goal
of this first block is to extract features at multiple scales, by performing a classic convolution with
three different filter sizes (3× 3, 5× 5, 7× 7) followed by a graph convolution operation and finally
concatenating the resulting features. The network also has several residual connections: notably,
the input-output residual has been shown to be very effective for the denoising task Zhang et al.
(2017) because it makes the network estimate noise features by progressively removing the clean
image. The connection between the input and output of each residual block also improves gradient
backpropagation.

2.1 GRAPH-CONVOLUTIONAL LAYER

The graph-convolutional layer is at the core of the proposed model. A schematic representation is
shown in Fig. 2. This layer extends the classical convolutional layer by aggregating the hidden-
layer feature vectors of spatially-adjacent pixels as well as the hidden-layer feature vectors of
spatially-distant pixels that are similar (nearest neighbors) in the feature space. The final output
of the graph-convolutional layer is then an average between the local and non-local contribution.
The local features are aggregated using a classic 3 × 3 convolution. Instead, the non-local fea-
tures are aggregated using the edge-conditioned graph convolution as defined in Simonovsky &
Komodakis (2017). Using this definition, the graph convolution operation performs weighted aggre-
gations over a neighborhood, where the weights used for the aggregation depend on the edge labels
of the graph. In particular, we define the edge label as the difference between the features of the two
nodes of the edge. The weights of the local aggregation are defined by a fully-connected network
F l : Rdl → Rdl+1×dl

, which takes as input the edge labels and outputs the corresponding weight

2



Published as a conference paper at ICLR 2019

Table 1: Set12 PSNR (dB)
1 2 3 4 5 6 7 8 9 10 11 12 Avg

σ = 15
BM3D 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.10 32.13 31.92 32.10 32.372
WNNM 32.17 35.13 32.99 31.82 32.71 31.39 31.62 34.27 33.60 32.27 32.11 32.17 32.696
OGLR 31.36 34.88 32.31 30.70 31.26 30.46 30.87 33.97 32.54 31.58 31.59 31.71 31.936
DnCNN-S 32.61 34.97 33.30 32.20 33.09 31.70 31.83 34.62 32.64 32.42 32.46 32.47 32.859
GraphCNN 32.61 35.16 33.34 32.49 33.34 31.89 31.92 34.64 32.99 32.49 32.45 32.48 32.985

σ = 25
BM3D 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71 29.969
WNNM 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.257
OGLR 29.11 32.65 30.02 28.29 29.16 28.10 28.76 31.95 30.35 29.59 29.47 29.49 29.744
DnCNN-S 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12 30.436
GraphCNN 30.19 33.38 30.92 29.86 30.58 29.32 29.51 32.54 30.52 30.28 30.13 30.11 30.614

σ = 50
BM3D 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.22 26.78 26.81 26.46 26.722
WNNM 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64 27.052
OGLR 25.98 29.19 26.26 24.75 25.80 25.05 25.80 28.80 27.04 26.53 26.69 26.34 26.520
DnCNN-S 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.178
GraphCNN 27.02 30.33 27.46 26.07 26.92 25.93 26.41 29.38 26.93 27.10 27.19 26.85 27.299

Figure 3: Denoising results for starfish. Left to right: noisy (σ = 25), original, OGLR (28.29 dB),
BM3D (28.56 dB), DnCNN-S (29.41 dB), GraphCNN (29.86 dB).
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where Hl
i and N l

i are respectively the feature vector and the neighborhood of the i-th node at the
l-th layer, wl are the weights parameterizing network F l, Wl ∈ Rdl+1×dl

is a linear transformation
of the node itself, bl a bias, and σ a non-linearity.

The non-local pixels are chosen as the k-nearest-neighbor feature vectors in terms of Euclidean
distance with respect to the feature vector of the current pixel within a search window of predefined
size. Notice that the non-local selection is performed only at some hidden layers (as shown by the
NLG block in Fig. 1), with the two 3-layer residual blocks sharing the same non-local graph. This
helps reducing complexity without compromising performance.

The role of the non-local graph in such residual architecture, whose goal is to successively remove
the clean image from the noise features, is to identify the latent correlations in the feature space
which are due to the residual image content rather than the uncorrelated noise.

We now analyze more in detail the role of the graph-convolution operation described in (1). Such
definition provides two main contributions to the effectiveness of the algorithm. The key of this op-
eration is the function F , which takes as input the difference between the feature vector of the current
pixel and the feature vector of a non-local neighboring pixel and outputs the weight matrix used to
transform the non-local feature vector before the aggregation. First, (1) can be called “convolution”
because this function provides meaningful weight sharing under suitable stability assumptions: for
a similar input difference, the output weight matrix should be similar. Second, differently from clas-
sical convolution this function enables a data-dependent aggregation because the weights depend
directly on the relationships among feature vectors.
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Figure 4: Denoising results for airplane. Left to right: noisy (σ = 25), original, OGLR (28.10 dB),
BM3D (28.42 dB), DnCNN-S (29.13 dB), GraphCNN (29.32 dB).

Figure 5: Receptive field (green) of a single pixel (red) for graph-convolutional layers 1-4 (ignoring
the 5× 5 and 7× 7 multiscale branches for ease of representation).

3 RESULTS

In this section we perform an experimental evaluation of the proposed method, comparing the pro-
posed method with several state-of-the-art denoising methods. We consider two model-based meth-
ods that exploit non-local priors (i.e., BM3D (Dabov et al., 2007) and WNNM (Gu et al., 2014)), a
graph-based variational method (i.e., OGLR (Pang & Cheung, 2017)) and the state-of-the-art CNN
model for image denoising (i.e., DnCNN (Zhang et al., 2017)).

3.1 EXPERIMENTAL SETTINGS

In the following experiments, we consider grayscale images. For training, we use the 432 training
images of the BSD500 dataset (Arbelaez et al., 2011). Instead, for testing we use a set of 12 widely
used images (i.e., Cameraman, House, Peppers, Starfish, Monarch, Airplane, Parrot, Lena, Barbara,
Boat, Man, Couple). We train the network using a fixed noise standard deviation, considering three
different noise levels σ = 15, 25, 50. We subdivide the images into patches of size 32×32 and train
the network on 200k patches for 30 epochs. The non-local graph selects the 8 nearest neighboring
pixels in terms of Euclidean distance between the hidden feature vectors, excluding the spatially
adjacent pixels. The number of hidden features is 66 for all layers, except for the ones in the
branches of the preprocessing block, for which is 22.

3.2 QUANTITATIVE AND QUALITATIVE RESULTS

Table 1 shows the PSNR results on the 12 images of the test set. We can see that the proposed
architecture outperforms the competing methods on most of the images and it provides the best
average scores. In order to highlight the importance of the non-local filters, Table 2 compares the
proposed method with a network having the same architecture of the proposed model but employing
only local neighbors instead of local and 8 non-local. The results show that the nonlocal model
is indeed key to achieving the best possible performance. Notice that the 0-NN GraphCNN and
the the DnCNN-S show similar performance, which suggests that the gain provided by the 8-NN
Graph CNN is due to the non-local contribution. In addition to these quantitative results, we also
show a qualitative comparison of the denoising methods in Figs. 3 and 4. We can clearly see that
the proposed method provides the best visual quality, recovering finer details and producing fewer
artifacts. Lastly, we show in Fig. 5 the receptive field of a pixel for the first four graph-convolutional

Table 2: Set12 average PSNR (dB) without non-local NN
σ = 15 σ = 25 σ = 50

DnCNN-S 32.859 30.436 27.178
GraphCNN (0-NN) 32.858 30.411 27.100
GraphCNN (8-NN) 32.985 30.614 27.299
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layers. It is interesting to note that the receptive field is adapted to the image characteristics, covering
only a homogeneous region of the image.
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