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ABSTRACT

Recent advancements in graph neural networks (GNNs) have led to state-of-the-
art performance in various applications including chemo-informatics, question an-
swering systems, and recommendation systems, to name a few. However, making
these methods scalable to huge graphs is challenging. In particular, the existing
methods for accelerating GNNs are either not theoretically guaranteed in terms
of approximation error or require at least linear time computation cost. In this
paper, we propose a constant time approximation algorithm for the inference and
training of GNNs that theoretically guarantees arbitrary precision with arbitrary
probability. The key advantage of the proposed algorithm is that the complexity
is completely independent of the number of nodes, edges, and neighbors of the
input. To the best of our knowledge, this is the first constant time approximation
algorithm for GNNs with theoretical guarantee. Through experiments using syn-
thetic and real-world datasets, we evaluate our proposed approximation algorithm
and show that the algorithm can successfully approximate GNNs in constant time.

1 INTRODUCTION

Machine learning on graph structures has many applications such as chemo-informatics (Gilmer
et al., 2017), drug discovery (Li et al., 2018; You et al., 2018), question answering systems (Nickel
et al., 2016; Schlichtkrull et al., 2017; Hamilton et al., 2018), recommendation systems (Ying et al.,
2018), and physical systems (Sanchez-Gonzalez et al., 2018) to name a few. Recently, a novel
graph learning algorithm called graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al.,
2009; Kipf & Welling, 2016; Hamilton et al., 2017) was proposed, and it showed state-of-the-art
performances in various graph learning tasks. However, GNNs need at least deg(v) operations
to aggregate neighbor features to the node v. Since many real-wold data follow the power-law
and some hub nodes can have extremely high degrees (e.g., celebrities in social networks), it is
computationally expensive to aggregate neighbor features of such high degree nodes. Moreover, if
we consider 2 or more hops (i.e., layers), even an ordinary node has to aggreagte a large number
of features since it connects with some hub nodes. Therefore, applying GNNs to huge graphs is
challenging. Although Ying et al. (2018) succeeded in applying GNNs to a web-scale network by
using MapReduce, it still requires massive computational resources.

There are several node sampling techniques for reducing GNN computation. For example, an empir-
ical neighbor sampling scheme is used to speed up GraphSAGE (Hamilton et al., 2017). FastGCN
(Chen et al., 2018b), Huang et al. (2018) and Chen et al. (2018a) proposed other sampling methods
to accelerate GNNs. Overall, the existing sampling techniques for GNNs work well in practice.
However, these techniques are either not theoretically guaranteed in terms of approximation error or
require at least linear time computation cost for training and inference GNNs.

In this paper, we utilize neighbor sampling (Hamilton et al., 2017) and derive a constant time approx-
imation algorithm for inference and gradient computation of GNNs. To be precise, given an error
tolerance ε and confidence probability 1−δ, our approximation algorithm computes the estimate ẑv
of the exact embedding zv of a node v, such that Pr[‖ẑv − zv‖2 ≥ ε] ≤ δ and the estimate ∂̂zv

∂W (l)
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Table 1: 3 means that the network can be approximated in constant time by our proposed algorithm.
7 means that the network cannot be approximated by any algorithm.

GraphSAGE-GCN GraphSAGE-mean GraphSAGE-pool GCN

Activation Inference Training Inference Training

sigmoid / tanh 3 3 3 3 7 7
Thm. 1 Thm. 3 Thm. 1 Thm. 3 Thm. 8 Thm. 9

ReLU 3 7 3 7 7 7
Thm. 1 Thm. 7 Thm. 1 Thm. 7 Thm. 8 Thm. 9

ReLU + normalization 7 7 7 7 7 7
Thm. 6 Thm. 6 Thm. 6 Thm. 6 Thm. 8 Thm. 9

Algorithm 1 Oz: Exact embedding

Require: Graph G = (V,E) (as oracle); Feature X ∈ Rn×d0 (as oracle); Weight matrix W (l) ∈
Rdl×dl−1(l = 1, . . . , L); Node index i ∈ V .

Ensure: Exact embedding zi
1: z

(0)
v ← xv (∀v ∈ V ) # initialize embedding as feature vectors

2: for l = 1, . . . , L do
3: m

(l)
v ← 1

deg(v)

∑
u∈N (v) z

(l−1)
u (∀v ∈ V ) # aggregate features

4: h
(l)
v ←W (l)m

(l)
v (∀v ∈ V ) # linear transformation

5: z
(l)
v ← σ(h

(l)
v ) (∀v ∈ V ) # apply activation function

6: end for
7: return z

(L)
i

of the exact gradient ∂zv

∂W (l) of the embedding zv with respect to the network parameters W (l), such

that Pr[‖ ∂̂zv

∂W (l) − ∂zv

∂W (l) ‖F ≥ ε] ≤ δ. Our algorithm can approximate the exact embedding and
its gradients within O( 1

ε2L
(log 1

ε + log 1
δ )L−1(log 1

δ )) time, where L is the number of layers. This
complexity is completely independent of the number of nodes, edges, and neighbors of the input;
the proposed algorithm can deal with graphs irrespective of however large they may be.

2 BACKGROUND

Notations: Let G be the input graph, V = {1, 2, . . . , n} be the set of nodes, n = |V | be the number
of nodes, E be the set of edges, m = |E| be the number of edges, deg(v) be the degree of a node
v, N (v) be the set of neighbors of a node v, xv ∈ Rd0 be the feature vector associated to a node
v ∈ V , X = [x1,x2 . . . ,xn]> ∈ Rn×d0 be the stacked feature vectors, and > denotes the matrix
transpose. We assume there is always a self loop for each node.

Node Embedding Model: We consider graph embedding problems and employ GraphSAGE-GCN
(Hamilton et al., 2017) to calculate the embeddings of nodes. The same arguments about approxima-
bility are applicable to GraphSAGE-mean with a slight modification. Algorithm 1 shows the pseudo
code, where σ(·) is an elementwise activation function (e.g., sigmoid, ReLU). The final output is
simply denoted as zi = z

(L)
i . Note that, we do not normalize z(l) as in the original network because

GraphSAGE-GCN cannot be approximated in constant time with normalization (see Theorem 6).

Computational Model Assumptions: We have to specify how to access the input to design constant
time algorithms because the constant time algorithms cannot read the entire input. In this paper, we
follow the standard convention of sublinear time algorithms (Parnas & Ron, 2007; Nguyen & Onak,
2008). Namely, we model our algorithm as an oracle machine that can query about the input and
measure the complexity by query complexity. Algorithms can access the input only by querying the
following three oracles: (1) Odeg(v): the degree of node v, (2) OG(v, i): the i-th neighborhood of
node v, and (3) Ofeature(v, i): the i-th feature of node v.
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Algorithm 2 Ô(1)
z : Constant time approximation of z(1)

v

Require: Graph G = (V,E) (as oracle); Feature X ∈ Rn×d0 (as oracle); Weight matrix W (l) ∈
Rdl×dl−1(l = 1, . . . , L); Node index v ∈ V ; Error tolerance ε; Confidence probability 1− δ.

Ensure: Approximation of the embedding z
(1)
v

1: r(1) ← ceil(
2B2B2

opK
2d0

ε2 log 2d0
δ )

2: S(1) ← uniformly sample with replacement from the neighbors of v with r(1) samples
3: m̂

(1)
v ← 1

r(1)

∑
u∈S(1) xu

4: ĥ
(1)
v ←W (1)m̂

(1)
v

5: ẑ
(1)
v ← σ(ĥ

(1)
v )

6: return ẑi

Algorithm 3 Ô(l)
z : Constant time approximation of z(l)

v

Require: Graph G = (V,E) (as oracle); Feature X ∈ Rn×d0 (as oracle); Weight matrix W (l) ∈
Rdl×dl−1(l = 1, . . . , L); Node index v ∈ V ; Error tolerance ε; Confidence probability 1− δ.

Ensure: Approximation of the embedding z
(l)
v

1: r(l) ← ceil(
8B2

l−1B
2
opK

2dl−1

ε2 log 4dl−1

δ ) # B0 = B,Bl = KBopBl−1 + ‖σ(0dl)‖2
2: S(l) ← uniformly sample with replacement from the neighbors of v with r(l) samples
3: m̂

(l)
v ← 1

r(l)

∑
u∈S(l) Ô(l−1)

z (u, ε
4KBop

, εδ
16BopKBl−1

)

4: ĥ
(l)
v ←W (l)m̂

(l)
v

5: ẑ
(l)
v ← σ(ĥ

(l)
v )

6: return ẑi

Problem Formulation: Under the fixed network structure (i.e., the number of layers L, the di-
mensions dl, and the activation function σ(·)), we construct theoretically guaranteed approximation
algorithms that calculate the approximation of embedding vectors zv and gradients ∂zv

∂W (l) in con-
stant time irrespective of the number of nodes, edges, neighbors of the input and the feature vectors
X and network parameters W (l). However, it is impossible to construct a constant time algorithm
without any assumption about the inputs. Therefore, we make some mild assumptions:

Assumption 1 ‖xi‖2 and ‖W (l)‖op are bounded by some constants B and Bop, respectively.
Assumption 2 The activation function σ(·) is K-Lipschitz (e.g., sigmoid, ReLU).
Assumption 3 The gradient of the activation function σ′(·) is K ′-Lipschitz (e.g., sigmoid, tanh).

We use Assumption 3 only for gradient computation. Note that if ‖W (l)‖op, the operator norm of
W (l), is bounded by some constant Bop, then ‖W (l)‖F is also bounded by some constant BF . We
prove later that it is impossible to construct a constant time algorithm without these assumptions
(see Section 4 for details). Assumption 1 can be achieved by feature clipping, weight clipping, or
weight decay in practice.

3 PROPOSED METHOD

Constant time embedding approximation (Inference): Here, we propose a constant time ap-
proximation algorithm based on neighbor sampling, which approximates the embedding zv with an
absolute error of at most ε and probability 1 − δ. We construct the algorithm layer by layer recur-
sively. We denote the algorithm that calculates the estimate of embeddings in the l-th layer z(l) as
Ô(l)
z (l = 1, . . . , L). We show the pseudo codes of the base case in Algorithm 2 and the inductive

step in Algorithm 3. In the following, we prove that Algorithms 2 and 3 approximate the embedding
zv with arbitrary precision and arbitrary probability.
Theorem 1. Under Assumptions 1 and 2, ∀ε > 0, 0 < δ < 1,

Pr[‖Ô(L)
z (v, ε, δ)− zv‖2 ≥ ε] ≤ δ.
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Theorem 1 shows that Algorithms 2 and 3 approximate the embedding zv with arbitrary precision
and arbitrary probability.

Next, we will investigate the query complexity of Algorithms 2 and 3.

Theorem 2. Under Assumptions 1 and 2, the query complexity of Algorithms 2 and 3 is
O( 1

ε2L
(log 1

ε + log 1
δ )L−1(log 1

δ )).

Theorem 2 shows that we can approximate the exact embedding within O( 1
ε2L

(log 1
ε +

log 1
δ )L−1(log 1

δ )) time, and this complexity is independent of the the number of nodes, edges,
and neighbors of the input; the proposed algorithm works completely irrespective of how large the
input graphs are. Moreover, The complexity is polynomial with respect to 1

ε and log 1
δ .

Constant time gradient approximation (Training): Next, we propose a constant time approxima-
tion algorithm that approximates the gradient of embeddings with respect to the network parameters
with an absolute error of at most ε and probability 1 − δ. The basic strategy is to run Algorithms
2 and 3, and then calculate the gradients of the embedding zv . Let ∂zv

∂W (l) be the gradient of the
embedding zv with respect to the network parameter W (l) (i.e., ( ∂zv

∂W (l) )ijk = ∂zvi

∂W
(l)
jk

).

Theorem 3. Let ∂̂z
(L)
v

∂W (l) (ε, δ) be the gradient of ẑ(L)
v , which is obtained by running Ô(L)

z (v, ε, δ) and
backpropagation, with respect to W (l). Then, under Assumptions 1, 2, and 3, there exist constants
C and D such that ∀ε > 0, 0 < δ < 1,

Pr[‖ ∂̂z
(L)
v

∂W (l)
(Cε,Dδ)− ∂z

(k)
v

∂W (l)
‖F ≥ ε] ≤ δ.

Corollary 4. Under Assumptions 1, 2, and 3, we can calculate the gradient ∂z(k)
v

∂W (l) with an absolute
error of at most ε and probability 1− δ in O( 1

ε2L
(log 1

ε + log 1
δ )L−1(log 1

δ )) time.

4 INAPPROXIMABILITY

In this section, we show that some existing GNNs cannot be approximated in constant time by our
proposed algorithm but also by any other algorithm. In other words, for any algorithm that has the
error tolerance ε and confidence probability δ as parameters and calculates an estimate of embedding
or gradient of some classes of GNNs in constant time, there exist ε > 0, δ > 0 and an input such
that satisfies assumptions but the approximation error is at least ε with probability at least δ.

Theorem 5. Without Assumption 1, the inference of GraphSAGE-GCN (Hamilton et al., 2017) with
any activation but a constant function cannot be approximated with arbitrary precision and proba-
bility in constant time.

Theorem 6. Even under Assumption 1, the inference and gradients of GraphSAGE-GCN (Hamil-
ton et al., 2017) with ReLU activation and normalization cannot be approximated with arbitrary
precision and probability in constant time.

Theorem 7. Even under Assumptions 1 and 2, the gradients of GraphSAGE-GCN (Hamilton et al.,
2017) with ReLU activation cannot be approximated with arbitrary precision and probability in
constant time.

Note that the inference of GraphSAGE-GCN with ReLU activation (without normalization layer)
can be approximated in constant time by using our algorithm (Theorem 1).

The following two theorems state that these networks cannot be approximated in constant time even
under Assumptions 1, 2, and 3.

Theorem 8. Even under assumptions 1, 2, and 3, the inference of GraphSAGE-pool (Hamilton
et al., 2017) cannot be approximated with arbitrary precision and probability in constant time.

Theorem 9. Even under Assumptions 1, 2, and 3, the inference of GCN (Kipf & Welling, 2016)
cannot be approximated with arbitrary precision and probability in constant time.
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Figure 1: Synthetic data experiments. (a) The approximation error of the original 1-layer
GraphSAGE-GCN (i.e., with ReLU activation and normalization) with synthetic data. (b) The ap-
proximation error of 1-layer GraphSAGE-GCN with sigmoid activation using the same synthetic
data as that in (a). (c) The approximation error of 1-layer GraphSAGE-GCN with sigmoid activa-
tion using synthetic data and its theoretical bound.

5 EXPERIMENTS

In this section, we confirm the following two facts through computational experiments:

Fact 1: The embeddings can be well approximated in constant time by Algorithms 2 and 3 (Theo-
rem 1), whereas the original GraphSAGE-GCN cannot be approximated in constant time
(Theorem 6).

Fact 2: Algorithm 2 is efficient.

We confirm Facts 1 and 2 with synthetic data. First, we use the original 1-layer GraphSAGE-GCN
(with ReLU activation and normalization) and 1-layer GraphSAGE-GCN with sigmoid activation for
comparison. The input graph is a clique Kn, the features are x1 = [1, 0]> and xi = [0, 1/n]> (i 6=
1), and the weight matrix is an identity matrix W (1) = I2. We use r(1) = 5, 10, 50, 100 as the
sample size. If a network can be approximated in constant time, the approximation error goes to zero
as the sample size increases even if the graph size goes to infinity. We show the approximation errors
of both the networks in Figure 1 (a) (b). The approximation error of the original GraphSAGE-GCN
converges to about 0.75 even if the sample size increases. On the other hand, the approximation
error of GraphSAGE-GCN with sigmoid function goes to zero and the errors become increasingly
bounded as the sample size increases. It matches Theorems 1 and 6.

Next, we use 1-layer GraphSAGE-GCN with sigmoid activation. The input graph is a clique Kn,
where the number of nodes is n = 1000. We set the dimensions as d0 = d1 = 2 and each feature
value is set to 1 with probability 0.5 and −1 otherwise. We initialize the weight matrix W (1)

with normal distribution and then normalize it so that ‖W (1)‖op = 1. For each r = 1 . . . 500,
we (1) initialize the weight matrix; (2) calculate the exact embedding of each node; (3) calculate
the approximation embedding of each node with r samples (i.e., r(1) = r); and (4) calculate the
approximation error of each node. We show the 99-th percentile point and the theoretical bound by
Theorem 1 with δ = 0.01 in Figure 1 (c). It matches Theorems 1. Note Theorem 1 holds for any
input, therefore the theoretical curve has to be above the experimental curve whatever the input is.

6 CONCLUSION

We proposed a constant time approximation algorithm for the inference and gradient computation
of GNNs, where the complexity is completely independent of the number of nodes, edges, and
neighbors of the input. We proved its theoretical guarantee in terms of the approximation error. This
is the first constant time approximation algorithm for GNNs in the literature. We further showed
that some existing GNNs cannot be approximated in constant time by any algorithm.
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A PROOFS

Lemma 10. Let B0 = B and Bl = KBopBl−1 + ‖σ(0dl)‖2 (l = 1, . . . , L), where 0dl is the
dl dimensional zero vector. Under Assumptions 1 and 2, the norm of the embedding in each layer
‖z(l)
v ‖2(l = 1, . . . , L) is bounded by Bl.

Proof of Lemma 10. ‖z(l)
v ‖2 = ‖σ(h

(l)
v )‖2 ≤ ‖σ(h

(l)
v ) − σ(0dl)‖2 + ‖σ(0dl)‖2 ≤ K‖h(l)

v −
0dl‖2 +‖σ(0dl)‖2 = K‖W (l)m

(l)
v ‖2 +‖σ(0dl)‖2 ≤ KBop‖m(l)

v ‖2 +‖σ(0dl)‖2 ≤ KBopBl−1 +

‖σ(0dl)‖2 = Bl. Therefore, ‖z(l)
v ‖2 ≤ Bl holds inductively.

Lemma 11 (Hoeffding (1963)). Let X1, X2, . . . , Xn be independent random variables bounded by
the intervals [−B,B], and let X̄ be the empirical mean of these variables X̄ = 1

n

∑n
i=1Xi. Then,

for any ε > 0,

Pr[|X̄ − E[X̄]| ≥ ε] ≤ 2 exp

(
− nε

2

2B2

)
holds.

Lemma 12 (multivariate Hoeffding’s inequality). Let x1,x2, . . . ,xn be independent d dimensional
random variables whose 2-norms are bounded ‖xi‖2 ≤ B, and let x̄ be the empirical mean of these
variables x̄ = 1

n

∑n
i=1 xi. Then, for any ε > 0,

Pr[‖x̄− E[x̄]‖2 ≥ ε] ≤ 2d exp

(
− nε2

2B2d

)
holds.

Proof of Lemma 12. Apply Lemma 11 to each dimension k of Xi. Then

Pr[|X̄k − E[X̄]k| ≥
ε√
d

] ≤ 2 exp

(
− nε2

2B2d

)
Note that |Xik| < B because ‖Xi‖2 < B. Therefore,

Pr[∃k ∈ {1, 2, . . . , d} |X̄k − E[X̄]k| ≥
ε√
d

] ≤ 2d exp

(
− nε2

2B2d

)
If |X̄k − E[X̄]k| < ε√

d
holds for all dimension k, then

‖X̄ − E[X̄]‖2 =

√√√√ d∑
k=1

(X̄k − E[X̄]k)2 <

√
d · ε

2

d
= ε

Therefore,

Pr[‖X̄ − E[X̄]‖2 ≥ ε] ≤ 2d exp

(
− nε2

2B2d

)

Lemma 13. Let A1, A2, . . . An be probabilistic events such that Pr[Ai] ≤ p (i = 1, . . . , n). Then,
the probability that more than or equal to k events happen is at most npk .
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Proof. Let [n] = {1, 2, . . . , n}, Cn,t be all size t subsets of [n] (e.g., C3,2 =
{{1, 2}, {1, 3}, {2, 3}}), and Cin,t be all size t subsets of [n] that contains i (e.g., C1

3,2 =
{{1, 2}, {1, 3}}).

k · Pr[more than or equal to k events happen] = k ·
n∑
t=k

∑
S∈Cn,t

Pr[
∧
j∈S

Aj ∧
∧

j∈[n]\S

Acj ]

≤
n∑
t=k

∑
S∈Cn,t

t · Pr[
∧
j∈S

Aj ∧
∧

j∈[n]\S

Acj ]

=

n∑
i=1

n∑
t=k

∑
S∈Ci

n,t

Pr[
∧
j∈S

Aj ∧
∧

j∈[n]\S

Acj ]

≤
n∑
i=1

n∑
t=1

∑
S∈Ci

n,t

Pr[
∧
j∈S

Aj ∧
∧

j∈[n]\S

Acj ]

=

n∑
i=1

Pr[Ai]

≤ np
where c denotes complement. Therefore,

Pr[more than or equal to k events happen] ≤ np

k

Proof of Theorem 1. We prove this by performing mathematical induction on the number of layers
L.

base case: It is shown that the statement holds for L = 1.

By multivariate Hoeffding’s inequality

Pr[‖m̂(1)
v −m(1)

v ‖2 ≥
ε

KBop
] ≤ δ.

If ‖m̂(1)
v −m

(1)
v ‖2 < ε

KBop
, then ‖ẑ(1)

v −z
(1)
v ‖2 ≤ K‖ĥ(1)

v −h
(1)
v ‖2 ≤ KBop‖m̂(1)

v −m
(1)
v ‖2 < ε.

Here, we use ‖Wm‖2 ≤ ‖W ‖op‖m‖2 ≤ Bop‖m‖ (Assumption 1) and ‖z−z′‖2 ≤ K‖h−h′‖2
(Assumption 2), respectively. Therefore,

Pr[‖ẑ(1)
v − z(1)

v ‖2 ≥ ε] ≤ δ

inductive step: It is shown that the statement holds for L = l+1 if it holds for L = l. The inductive
hypothesis is ∀v ∈ V, ε > 0, δ > 0, Pr[‖Ô(l)

z (v, ε, δ)− zv‖2 ≥ ε] ≤ δ.

Let m̄(l+1)
v = 1

r(l+1)

∑
u∈S(l+1) z

(l+1)
u (r(l+1) = |S(l+1)|), then by multivariate Hoeffding’s in-

equality,

Pr[‖m̄(l+1)
v −m(l+1)

v ‖2 ≥
ε

2KBop
] ≤ δ

2
. (1)

Let ẑ(l)
u = Ô(l)

z (u, ε
4KBop

, εδ
16BopKBl

) and κ = ceil( r(l+1)ε
8KBopBl

). If

#{u ∈ S(l+1) | ‖ẑ(l)
u − z(l)

u ‖2 ≥
ε

4KBop
} < κ (2)

where # denotes the number of elements, then

‖m̂(l+1)
v − m̄(l+1)

v ‖2 = ‖ 1

r(l+1)

∑
u∈S(l+1)

(ẑ(l)
u − z(l)

u )‖2

8
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≤ 1

r(l+1)

∑
u∈S(l+1)

‖ẑ(l)
u − z(l)

u ‖2

≤ 1

r(l+1)

(
r(l+1) · ε

4KBop
+ (κ− 1) · 2Bl

)
<

ε

4KBop
+

ε

4KBop

=
ε

2KBop

Note that ‖ẑ(l)
u ‖2 ≤ Bl also holds with the same argument with Lemma 10. Using a special case of

the induction hypothesis (i.e., ẑ(l)
u = Ô(l)

z (u, ε
4KBop

, εδ
16BopKBl

)):

Pr[‖ẑ(l)
u − z(l)

u ‖2 ≥
ε

4KBop
] ≤ εδ

16BopKBl
,

the probability that (2) does not hold is

Pr[#{u ∈ S(l+1) | ‖ẑ(l)
u − z(l)

u ‖2 ≥
ε

4KBop
} ≥ κ] ≤ r(l+1) · Pr[‖ẑ(l)

u − z(l)
u ‖2 ≥

ε

4KBop
] · 1

κ

≤ r(l+1) · εδ

16BopKBl
·

8KBopBl
r(l+1)ε

=
δ

2

Here, we use Lemma 13 to obtain the first inequality. Therefore,

Pr[‖m̂(l+1)
v − m̄(l+1)

v ‖2 ≥
ε

2KBop
] ≤ δ

2
(3)

Combining (1) and (3), using the triangle inequality,

Pr[‖m̂(l+1)
v −m(l+1)

v ‖2 ≥
ε

KBop
] ≤ δ

If ‖m̂(l+1)
v − m

(l+1)
v ‖2 < ε

KBop
, then ‖ẑ(l+1)

v − z
(l+1)
v ‖2 ≤ K‖ĥ(l+1)

v − h
(l+1)
v ‖2 ≤

KBop‖m̂(l+1)
v −m

(l+1)
v ‖2 < ε. Therefore,

Pr[‖ẑ(l+1)
v − z(l+1)

v ‖2 ≥ ε] ≤ δ

Proof of Theorem 2. We prove this by performing mathematical induction on the number of layers.

base case: It is shown that the statement holds for L = 1.

Algorithm 2 asks one query toOdeg, O( 1
ε2 log 1

δ ) queries toOG, and O( 1
ε2 log 1

δ ) queries toOfeature.
Therefore, the query complexity is O( 1

ε2 log 1
δ ) in total.

inductive step: It is shown that the statement holds for L = l + 1 if it holds for L = l.

Algorithm 3 asks one query to Odeg, O( 1
ε2 log 1

δ ) queries to OG, and O( 1
ε2 log 1

δ )

queries to Ô(l)
z (u,Θ(ε),Θ(εδ)). Using the induction hypothesis, the query complexity of

Ô(l)
z (u,Θ(ε),Θ(εδ)) is O( 1

ε2l
(log 1

ε + log 1
εδ )l−1(log 1

εδ )) = O( 1
ε2l

(log 1
ε + log 1

δ )l). Therefore,
the query complexity is O( 1

ε2(l+1) (log 1
ε + log 1

δ )l(log 1
δ )) in total

Lemma 14. Let Hk = K ′BopBk−1 + ‖σ′(0dl)‖2, G
(l)
l = HlBl−1, and G

(k+1)
l =

Hk+1BFG
(k)
l (k ≥ l). Under Assumptions 1, 2, and 3, ‖σ′(h(l)

v )‖2 and ‖ ∂z
(k)
v

∂W (l) ‖F (k ≥ l) are

bounded by Hk and G(k)
l , respectively.

9
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Proof of Lemma 14.

‖σ′(h(k)
v )‖2 ≤ K ′‖h(0)

v ‖2 + ‖σ′(0dk)‖2 ≤ K ′BopBk−1 + ‖σ′(0dk)‖2 = Hk

‖ ∂z
(l)
v

∂W (l)
‖F = ‖σ′(h(l)

v )m(l)T
v ‖F ≤ HlBl−1 = G

(l)
l

‖∂z
(k+1)
v

∂W (l)
‖F = ‖∂z

(k+1)
v

∂h
(k+1)
v

∂h
(k+1)
v

∂m
(k+1)
v

∑
u∈N (v)

∂m
(k+1)
v

∂z
(k)
v

∂z
(k)
v

∂W (l)
‖F

≤ ‖∂z
(k+1)
v

∂h
(k+1)
v

‖F ‖W (k+1)‖F
1

deg(v)

∑
u∈N (v)

‖ ∂z
(k)
v

∂W (l)
‖F

≤ Hk+1BFG
(k)
l = G

(k+1)
l

Proof of Theorem 3. Let E(k)
l and D(k)

l (k ≥ l) be

E
(l)
l =

1

K
(
Hl

Bop
+Bl−1K

′),

E
(k+1)
l =

G
(k)
l

√
dl−1dlHk+1BF

2BkBopK
+
BF
K

(
E

(k)
l Hk+1

2Bop
+K ′G

(k)
l ),

D
(l)
l = 1,

D
(k+1)
l =

dl−1dl
2

+
D

(k)
l G

(k)
l

2E
(k)
l Bk

+ 1.

They are constants with respect to the input size, ε, and δ. We prove C = 1

E
(L)
l

and D = 1

D
(L)
l

.

We prove this by performing mathematical induction on the number of layers L.

base case: It is shown that the statement holds for L = l.

From the proof of Theorem 1,

Pr[‖m̂(l)
v −m(l)

v ‖2 ≥
ε

KBop
] ≤ δ

. If ‖m̂(l)
v −m

(l)
v ‖2 < ε

KBop
,

‖ ∂̂z
(l)
v

∂W (l)
− ∂z

(l)
v

∂W (l)
‖F = ‖σ′(ĥ(l)

v )m̂(l)T
v − σ′(h(l)

v )m(l)T
v ‖F

≤ ‖σ′(ĥ(l)
v )‖2‖m̂(l)

v −m(l)
v ‖2 + ‖m(l)

v ‖2‖σ′(ĥ(l)
v )− σ′(h(l)

v )‖2
< Hl

ε

KBop
+Bl−1K

′ ε

K

=
1

K
(
Hl

Bop
+Bl−1K

′)ε = E
(l)
l ε

Therefore,

Pr[‖ ∂̂z
(l)
v

∂W (l)
− ∂z

(l)
v

∂W (l)
‖F ≥ E(l)

l ε] ≤ D(l)
l δ = δ

inductive step: It is shown that the statement holds for L = k + 1 if it holds for L = k.

10
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Let

∂z(k+1)

∂W (l)
=
∂z

(k+1)
v

∂h
(k+1)
v

∂h
(k+1)
v

∂m
(k+1)
v

1

r(k+1)

∑
u∈S(k+1)

∂z
(k)
v

∂W (l)

Esample = ‖ 1

r(k+1)

∑
u∈S(k+1)

∂z
(k)
v

∂W (l)
− 1

deg(v)

∑
u∈N (v)

∂z
(k)
v

∂W (l)
‖F

By Multivariate Hoeffding’s inequality,

Pr[Esample ≥
G

(k)
l

√
dl−1dl

2BkBopK
ε]

≤ 2dl−1dldk exp(− 1

2G
(k)2
l dl−1dldk

G
(k)2
l dl−1dl

4B2
kB

2
opK

2
ε2

8B2
kB

2
opK

2dk

ε2
log(

4dk
δ

))

=
dl−1dl

2
δ

If Esample <
G

(k)
l

√
dl−1dl

2BkBopK
ε, then

‖ ∂z
(L)
v

∂W (l)
− ∂z

(k)
v

∂W (l)
‖F ≤ ‖

∂z
(k+1)
v

∂h
(k+1)
v

‖F ‖
∂h

(k+1)
v

∂m
(k+1)
v

‖FEsample

<
G

(k)
l

√
dl−1dlHk+1BF

2BkBopK
ε

Therefore,

Pr[‖ ∂z
(L)
v

∂W (l)
− ∂z

(k)
v

∂W (l)
‖F ≥

G
(k)
l

√
dl−1dlHk+1BF

2BkBopK
ε] ≤ dl−1dl

2
δ (4)

Let ∂̂z
(k)
u

∂W (l) be the gradient of ẑ(k)
u , which is obtained by Ô(k)

z (u, ε
4KBop

, εδ
16BopKBl−1

), with respect

to W (l). Let κ = ceil( r
(k+1)E

(k)
l ε

8KBopG
(k)
l

). If

#{u ∈ S(l+1) | ‖ ∂̂z
(k)
u

∂W (l)
− ∂z

(k)
u

∂W (l)
‖F ≥

E
(k)
l ε

4KBop
} < κ (5)

where # denotes the number of elements, then

1

r(l+1)

∑
u∈S(l+1)

‖ ∂̂z
(k)
u

∂W (l)
− ∂z

(k)
u

∂W (l)
‖F ≤

1

r(l+1)
(r(l+1) ·

E
(k)
l ε

4KBop
+ (κ− 1) · 2G(k)

l )

<
E

(k)
l ε

4KBop
+

E
(k)
l ε

4KBop

=
E

(k)
l ε

2KBop

Note that ‖ ∂̂z
(k)
u

∂W (l) ‖ ≤ G
(k)
l also holds with the same argument with Lemma 14. Using the induction

hypothesis,

Pr[‖ ∂̂z
(k)
u

∂W (l)
− ∂z

(k)
u

∂W (l)
‖F ≥

E
(k)
l ε

4KBop
] ≤

D
(k)
l εδ

16BopKBk
Therefore, the probability that (5) does not hold is

Pr[#{u ∈ S(l+1) | ‖ ∂̂z
(k)
u

∂W (l)
− ∂z

(k)
u

∂W (l)
‖F ≥

E
(k)
l ε

4KBop
} ≥ κ]

11
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≤ r(l+1) · Pr[‖ ∂̂z
(k)
u

∂W (l)
− ∂z

(k)
u

∂W (l)
‖F ≥

E
(k)
l ε

4KBop
] · 1

κ

≤ r(l+1) ·
D

(k)
l εδ

16BopKBk
·

8KBopG
(k)
l

r(k+1)E
(k)
l ε

=
D

(k)
l G

(k)
l

2E
(k)
l Bk

δ

Here, we use Lemma 13 to obtain the first inequality. Therefore,

Pr[
1

r(l+1)

∑
u∈S(l+1)

‖ ∂̂z
(k)
u

∂W (l)
− ∂z

(k)
u

∂W (l)
)‖F ≥

E
(k)
l ε

2KBop
] ≤

D
(k)
l G

(k)
l δ

2E
(k)
l Bk

(6)

From the proof of Theorem 1,

Pr[‖ĥ(l+1)
v − h(l+1)

v ‖2 ≥
ε

K
] ≤ δ (7)

If 1
r(l+1)

∑
u∈S(l+1) ‖ ∂̂z

(k)
u

∂W (l) −
∂z(k)

u

∂W (l) ‖F <
E

(k)
l ε

2KBop
and ‖ĥ(l+1)

v − h
(l+1)
v ‖2 < ε

K , then

‖ ∂̂z
(L)
v

∂W (l)
− ∂z

(k)
v

∂W (l)
‖F

≤ ‖σ′(ĥ(k+1)
v )‖2‖W (k+1)‖F

1

r(l+1)

∑
u∈S(l+1)

‖ ∂̂z
(k)
u

∂W (l)
− ∂z

(k)
u

∂W (l)
‖F

+ ‖σ′(ĥ(k+1)
v )− σ′(h(k+1)

v )‖2‖W (k+1)‖F ‖
1

r(l+1)

∑
u∈S(l+1)

∂z
(k)
u

∂W (l)
‖F

< Hk+1BF
E

(k)
l ε

2KBop
+K ′

ε

K
BFG

(k)
l

=
BF
K

(
E

(k)
l Hk+1

2Bop
+K ′G

(k)
l )ε

Therefore, from (6) and (7),

Pr[‖ ∂̂z
(L)
v

∂W (l)
− ∂z

(k)
v

∂W (l)
‖F ≥

BF
K

(
E

(k)
l Hk+1

2Bop
+K ′G

(k)
l )ε] ≤

D
(k)
l G

(k)
l

2E
(k)
l Bk

δ + δ (8)

Combining (4) and (8), using the triangle inequality,

Pr[‖ ∂̂z
(L)
v

∂W (l)
− ∂z

(k)
v

∂W (l)
‖F ≥ E(k+1)

l ]
dl−1dl

2
δ +

D
(k)
l G

(k)
l

2E
(k)
l Bk

δ + δ = D
(k+1)
l δ

Proof of Theorem 5. There exists a ∈ R such that σ(a) 6= σ(0) because σ is not a constant. Con-
sider 1-layer GraphSAGE-GCN and the following two types of inputs:

• G is the clique Kn, W (1) = 1, and xi = 0 for all nodes i ∈ V .

• G is the clique Kn, W (1) = 1, xi = 0(i 6= v) for some node v ∈ V , and xv = an.

Then, for the former input, z(1)
i = σ(0) for all i ∈ V . For the latter type of inputs, z(1)

i = σ(a) for
all i ∈ V . If we set ε = |σ(a) − σ(0)|/2, the algorithm has to distinguish the types of inputs with
high probability. However, it needs Ω(n) queries to Ofeature to find the node v. As for W , we set
W (1) = an and xv = 1. Then the same argument follows.

12
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Proof of Theorem 6. Consider the following 1-layer GraphSAGE-GCN

hv ← RELU(W ·MEAN({xu | u ∈ N (v)}))
zv ← hv/‖hv‖2

and the following two types of inputs:

• G is the cliqueKn, W is the identity matrix I2, xi = [0, 0]>(i 6= v) for some node v ∈ V ,
and xv = [1, 0]>.

• G is the cliqueKn, W is the identity matrix I2, xi = [0, 0]>(i 6= v) for some node v ∈ V ,
and xv = [0, 1]>.

Then, for the former type of inputs, hi = [1/n, 0]>, zi = [1, 0]>, and ∂zi2
∂W21

= 1 for all i ∈ V .
For the latter type of inputs, hi = [0, 1/n]>, zi = [0, 1]>, and ∂zi2

∂W21
= 0 for all i ∈ V . If we

set ε = 1/2, the algorithm has to distinguish the types of inputs with high probability, both for the
inference and gradient. However, it needs Ω(n) queries to Ofeature to find the node v.

Proof of Theorem 7. Consider the following 1-layer GraphSAGE-GCN

hv ←W ·MEAN({xu | u ∈ N (v)}))
zv = RELU(hv)

and consider the following two types of inputs:

• G is the clique Kn, W = [−1, 1], xi = [1, 1]>(i 6= v) for some node v ∈ V , and
xv = [1, 2]>.

• G is the clique Kn, W = [−1, 1], xi = [1, 1]>(i 6= v) for some node v ∈ V , and
xv = [1, 0]>.

Then, for the former type of inputs, MEAN({xu | u ∈ N (v)}) = [1, 1 + 1
n ]>, hv = zv = 1

n ,
and ∂zv

∂W = [1, 1 + 1
n ] for all i ∈ V . For the latter type of inputs, MEAN({xu | u ∈ N (v)}) =

[1, 1− 1
n ]>, hv = − 1

n , zv = 0, and ∂zv

∂W = [0, 0] for all i ∈ V . If we set ε = 1/2, the algorithm has
to distinguish the types of inputs with high probability. However, it needs Ω(n) queries toOfeature to
find the node v.

Proof of Theorem 8. Consider the following 1-layer GraphSAGE-pool

hv ← σ(W ·max({xu | u ∈ N (v)}))

and the following two types of inputs:

• G is the clique Kn, W = 1, and xi = 0 for all nodes v ∈ V .

• G is the clique Kn, W = 1, xi = 0 (i 6= v) for some node v ∈ V , and xv = 1.

Then, for the former type of inputs, zi = σ(0) for all i ∈ V . For the latter type of inputs, zi = σ(1)
for all i ∈ V . If we set ε = |σ(1) − σ(0)|/2, the algorithm has to distinguish the types of inputs
with high probability. However, it needs Ω(n) queries to Ofeature to find the node v.

Proof of Lemma 9. Consider the following 1-layer GCN

z = σ(D−1/2AD−1/2XW )

and the following two types of inputs:

• G is a star where v ∈ V is the center of G, W = 1, and all features are 0.

• G is a star where v ∈ V is the center of G, W = 1, and features of
√

2n leafs are 1 and
the features of other nodes are 0.

13
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Then, for the former type of inputs, zv = σ(0). For the latter type of inputs, zv = σ(1). Suppose
there is a constant time algorithm that calculates zv in arbitrary precision with arbitrary probability
in constant time. If we set ε = (σ(1) − σ(0))/2 and δ = 1/3, this algorithm has to distinguish
the types of inputs with probability 2/3 within C accesses. Suppose the input is of the latter type.
When this algorithm accesses Ofeature, the probability that all the returned values are 0 is at least
(n−1−

√
2n

n−1 )C . This probability goes to 1 when n goes to∞. Therefore, if the size of the graph is
sufficiently large, this algorithm cannot distinguish the type of input with probability 2/3.

14
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