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ABSTRACT

Question answering remains a challenge for machines, partly due to the ambiguity
of natural language and implied context, which often requires external knowledge
to resolve. In this work, we present a general framework for incorporating such
external knowledge (encoded as knowledge graphs) into question answering sys-
tems using graph convolutional neural networks. We applied our framework on
top of Stochastic Answer Networks (SAN), a state-of-the-art method for question
answering, and evaluated the system on the Stanford Question Answering Dataset
2.0. Our results show that leveraging knowledge brings significant improvements
in terms of EM and F1 scores, validating the importance of incorporating external
knowledge in understanding textual context.

1 INTRODUCTION

Question answering with text or machine reading comprehension entails answering questions ac-
cording to the given textual context. By exploring various attention mechanisms and model struc-
tures, existing methods (Xiong et al., 2017; Seo et al., 2017; Devlin et al., 2018) have achieved
a substantial leap of performance in this task. However, question answering remains a challeng-
ing task. This is partially because natural language understanding involves ambiguity and implied
context. Answering questions sometimes requires essential common sense knowledge or related
background facts aside from the given context.

Several methods have been proposed to leverage knowledge graphs for question answering
tasks (Mihaylov & Frank, 2018; Shen et al., 2018). However, they either only utilize entity embed-
dings pre-trained on the knowledge graph (Shen et al., 2018), or incorporate fact-triplets extracted
from the knowledge graph (Mihaylov & Frank, 2018). Neither of these approaches can adequately
exploit the graph structure of the knowledge graph, which is essential for modelling relationships
between the concepts.

In this work, we focus on incorporating external knowledge in the question answering task. In
particular, we utilize Graph Convolutional Neural Networks (Graph CNNs) to represent knowledge
from ConceptNet (Speer et al., 2016). To model knowledge related to the context associated with
a question, we build a knowledge sub-graph that includes relevant concepts and relations. A Graph
CNN is then used to encode the knowledge sub-graph and generate a context-related knowledge
vector. Finally, the knowledge vector is incorporated into an existing question answering method
to derive a knowledge-aware context representation. Our formulation to produce knowledge-aware
context representations is general and can be plugged into any question answering method. We
chose the Stochastic Answer Networks (SAN) (Liu et al., 2018) as the base model in this work.
Experimental results on the SQuAD2.0 dataset (Rajpurkar et al., 2018) show that our method brings
a significant performance improvement to the base model, which verifies the importance of external
knowledge for resolving ambiguity and supplying implied facts for question answering.
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Figure 1: Illustration of our framework. Based on the ConceptNet, a knowledge sub-graph is built for the
passage context associated with each question. A Graph CNN is utilized to capture knowledge from these
sub-graphs and to generate knowledge-aware memory for answer prediction.

2 RELATED WORK

Incorporating external knowledge has been shown to be beneficial for applications in computer vi-
sion and natural language processing (Wu et al., 2018; Fang et al., 2017). For question answering
tasks based on text, several methods have been proposed to incorporate external knowledge. For
example, Shen et al. (2018) presented a method for ranking question answer pairs with external
knowledge from a knowledge graph, where entities are extracted from the question answer pair and
represented by embeddings pre-trained on the knowledge graph. Then a knowledge-based context
representation is derived with an attention mechanism between entity representations from knowl-
edge graph and original question answer pair. Mihaylov & Frank (2018) proposed to use external
knowledge from a knowledge graph for the cloze-style reading comprehension task. They collect a
set of facts from the knowledge graph as the memory, where facts are represented as triples (subject,
relation, object). Key knowledge is retrieved for answer inference. In these methods, the graph
structure among the concepts is not well exploited.

3 METHOD

In this section, we introduce our method that encodes external knowledge from a knowledge graph
for question answering. We first describe the process of building knowledge sub-graphs from Con-
ceptNet for the passage context associated with each question. Then we explain the Graph CNN
model to encode knowledge from the sub-graphs. After that, we describe how to incorporate
knowledge-aware context representation in the base model. An overview of the framework is shown
in Figure 1.

3.1 BUILDING AND ENCODING KNOLWEDGE SUB-GRAPHS

It is not feasible to incorporate the entire ConceptNet into the question answering model, as Con-
ceptNet has millions of vertices and edges. We instead build a directed knowledge sub-graph for the
passage context associated with a question. We extract initial concepts from the context and retrieve
their one-hop neighborhood in ConceptNet as external concepts; relevant edges are also collected.
The resulting sub-graph covers concepts and their neighborhood in the knowledge graph that are
related to the passage context.

With knowledge sub-graphs built for the passage context, we can use a Graph CNN to encode this
knowledge. A sub-graph is denoted by G = (V,E), where V is the set of concepts/vertices and E is
the set of edges. Concept representations are initialized with pre-trained word embeddings and we
randomly initialize the edge embedding for each relationship.
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Let hli denote the feature vector for the i-th vertex at layer l, and elij be the feature vector for the
edge from the j-th vertex to the i-the vertex at layer l. We follow (Bresson & Laurent, 2017) to add
gating and non-linearity in the Graph CNN. All W l

k and blk are parameters to be learned. The vertex
feature vector is computed as:
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where {hlj : j → i} denotes the neighborhood of the i-th vertex at layer l. σ is the sigmoid function.
� is the Hadamard point-wise multiplication operator. σ
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acts as a gate which regulates

the flow of information from different neighboring vertices. The edge feature vector is defined as:
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Following (Bresson & Laurent, 2017), we add residual connections every 2 Graph CNN layers and
perform batch normalization (Ioffe & Szegedy, 2015) over vertices and edges after each layer.

At the final layer L, we generate a single vector representing the knowledge sub-graph using average
pooling over feature vectors of all vertices:

G =
1

|V |

|V |∑
i=1

hLi (3)

where |V | indicates the number of vertices in the entire sub-graph.

3.2 INCORPORATING THE GRAPH REPRESENTATION

The question answering task we consider in this paper is defined as follows. For a question
Q = {q0, q1, ..., qm−1} and the related passage context P = {p0, p1, ..., pn−1} the goal is to find
the answer span A = {astart, aend}. In this paper, we choose the Stochastic Answer Network
(SAN) (Liu et al., 2018) as the base model, but our method is general and is compatible with any
question answering method. The SAN method mainly consists of two modules: (1) the memory
generation module, where Q and P are processed to generate the memory; (2) the answer module
where the answer span is predicted based on the memory.

A shared Bidirectional Long Short-Term Memory (BiLSTM) network to derive contextual represen-
tations of Q and P as Hq ∈ R2d×m and Hp ∈ R2d×n. d denotes the hidden size of the BiLSTM.
The memory generation module of SAN takes Hq and Hp as input and produces memory M for
answer prediction:

M = Mem(Hp, Hq) (4)
Together with M , SAN also produces intermediate representations: question-aware context repre-
sentations Up, and Ûp that are generated by performing self-attention on Up.

To incorporate the knowledge captured in the sub-graph representation G into the SAN base model,
we learn the knowledge-aware memory based on G. We first compute the attention vector AG
between the learned vector G representing the knowledge sub-graph and the memory M derived by
the SAN method :

AG = fatt(M̄, Ḡ) ∈ Rn (5)
where graph representation G and memoryM are first projected to a lower dimension and processed
by ReLU as Ḡ and M̄ before the dot product. AG indicates the relevance or importance of the i-th
memory slot with respect to G. Then we can derive the knowledge-aware context representation uG
as:

uG = concat(UpAG , ÛpAG ,MAG) (6)

where we incorporate memory M and intermediate context representations Up and Ûp. Then we
tile the knowledge-aware context uG for n times as UG and concatenate it to the memory. The final
knowledge-aware memory MG is:

MG = concat(M,UG) (7)

The resulting MG is a fusion of the question, the passage context, and the sub-graph representation,
which enables the framework to be aware of hidden background knowledge beyond the context.
Finally, MG is used instead of M to be passed to the answer module.
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Figure 2: Comparison of EM and F1 scores for the base model and our framework incorporating external
knowledge.

Table 1: EM and F1 scores of Graph CNN with different depths and concept embeddings.

Depth EM (%) F1 (%)
single-layer 68.49 71.30

2-layer 68.74 71.45
4-layer 69.70 72.60

Concept Embedding EM (%) F1 (%)
Random 67.86 70.89
GloVe 100 68.60 71.52
GloVe 300 69.39 72.44
NumberBatch 69.70 72.60

4 EXPERIMENTS

We evaluate our method on the Stanford Question Answering Dataset (SQuAD) 2.0 (Rajpurkar
et al., 2018). SQuAD 2.0 has 151,054 questions answers pairs from 505 articles, where 53,775
of the questions are unanswerable. Each question is accompanied with its “answerability” which
indicates whether the question is answerable, and the ground truth answers if the answer exists in
the context. Following settings in SAN (Liu et al., 2018), results on the official development set are
shown.

We measure the standard Exact Match (EM) and F1 scores to evaluate the accuracy. EM is the ratio
that predicted answers matches with one of ground truth answers exactly. F1 indicates the average
overlap between the prediction and the ground truth.

We compare our knowledge-aware framework with the base model SAN. The results are shown in
Figure 2. We show the average EM and F1 scores of four runs. Results over 19 epochs are shown
and after that the performances of both methods decrease. It can be observed that incorporating the
knowledge graph brings a significant performance improvement compared to the base model, which
indicates the importance of external knowledge in question answering.

We analyze the effect of choosing different depths for Graph CNN. As we add residual connections
after every 2 Graph CNN layers, 2 layers are treated as one unit. Table 1 shows that 4-layer Graph
CNN performs better than a 2-layer framework, which indicates that a deeper graph CNN structure
can encode knowledge of sub-graphs better. We have no results with more layers due to the limitation
of GPU memory. In addition, to verify the importance of exploiting the graph structure, we test with
a single-layer structure, where information will only flow through a single edge (one-hop). The setup
is similar to existing methods that incorporate knowledge by extracting triplets (subject, predicate,
object) from the knowledge base. The results show a performance drop of 1.21% and 1.30% to
EM and F1 respectively in the one-hop setting compred with 4-layer setting, thus validating the
importance of propagating information over multiple hops in the graph.

We also show the effect of choosing different concepts embedding initializations: (1) random ini-
tialization; (2) GloVe 100 (Pennington et al., 2014); (3) GloVe 300; (4) NumberBatch (Speer et al.,
2016). NumberBatch that is pre-trained on ConceptNet outperforms other embeddings, which con-
firms the importance of appropriate parameter initialization for vertices in Graph CNN.
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5 CONCLUSION

This paper presents a framework which incorporates external knowledge encoded in knowledge
graphs for the question answering task. We utilize Graph Convolutional Neural Networks to encode
the knowledge sub-graph built for the passage context, and generate knowledge-aware memory for
answer prediction. Our method is general and is compatible with any base method for question
answering. We evaluate our approach on the SQuAD 2.0 dataset and show that the knowledge-
aware method outperforms the base model, which verifies the importance of background knowledge
for language understanding.
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