Published as a paper at the RLGM workshop (ICLR 2019)

GRAPH CONVOLUTIONAL NETWORKS AS REWARD
SHAPING FUNCTIONS

Martin Klissarov & Doina Precup
Department of Computer Science

McGill University
{mklissa,dprecup}@cs.mcgill.ca

ABSTRACT

The framework of reward shaping (Ng et al.| [1999) provides an approach for de-
signing reward functions in such a way as to guarantee that the optimal policy
remains unchanged while improving learning. However, finding such functions
for complex environments automatically is a difficult problem. In this work, we
propose a new framework for learning reward shaping functions by drawing from
geometric deep learning. Our approach relies on Graph Convolutional Networks
(Kipf & Welling| 2016)) which we use to leverage the probabilistic inference view
of reinforcement learning. More precisely, we use backwards messages from re-
warding states, computed during inference and propagated through the environ-
ment’s underlying graph with the help of a graph convolutional network. We then
use these propagated messages for reward shaping in order to speed up the learn-
ing process. We demonstrate empirically that our approach can achieve substantial
improvements in both tabular and high-dimensional control problems with sparse
reward structure.

1 INTRODUCTION

Reinforcement learning algorithms provide a solution to the problem of learning a policy that op-
timizes an expected, cumulative function of rewards. Hence, a good reward function is critical to
the practical success of such algorithms, but designing such a function can be challenging (Amodei
et al., 2016). Approaches to this problem include intrinsic motivation (Oudeyer & Kaplan, 2007;
Schmidhuber; [2010), optimal rewards (Singh et al., 2010) and reward-shaping (Ng et al., [1999).
The latter provides an appealing formulation as it does not change the optimal policy of an MDP
while speeding up the learning process. However, the design of potential functions used for reward
shaping is still an open question.

In this paper, we propose a solution to this problem by approaching the reinforcement learning task
by considering the Markov Decision Process’ underlying graph. That is, each state is considered
as a node and each transition an edge. By looking at RL as a graph-structured task, we can exploit
recent advances in graph representation learning to provide a useful reward shaping function to the
agent acting on the graph. To do so, we will represent the backward messages of the probabilistic
inference view of reinforcement learning (Toussaint & Storkey, 2006}; [Rawlik et al., [2013}; Levine,
2018). Backward messages are distributions that measure the probability of following an optimal
trajectory from a given state, and can therefore provide a dense signal for the agent. We leverage this
in the form of a potential-based function for reward shaping. We propose an efficient and flexible
implementation for estimating the backward messages through Graph Convolutional Networks as a
parametric approximator (Kipf & Welling|, 2016).

2 BACKGROUND AND MOTIVATION

2.1 REWARD SHAPING

The framework of reward shaping provides a formal way to transform an MDP’s reward function
such that its optimal policy remains unchanged. Let the new reward function be: R/(s,a,s’) =

Published as a paper at the RLGM workshop (ICLR 2019)

r(s,a) + F(s,a,s’) where F(s,a,s’) is the shaping function, which can encode expert knowledge
or represent concepts such as curiosity (Schmidhuber, 2010; (Oudeyer & Kaplan, 2007). Ng et al.
(1999) showed that a necessary and sufficient condition for preserving the MDP’s optimal policy
when using R’ instead of r is for the shaping function to take the following form:

F(s,a,s') = y®(s') — ®(s)

where ®(s) is the scalar potential function ® : S — R. In (Ng et al., [1999), the potential function
was defined as a distance to a goal position. Different alternatives have been explored since (Haru-
tyunyan et al., |2015; Brys et al.| 2015)), but they either require a human in the loop or are not easily
scalable to large problems. We instead aim to learn the potential functions in an end-to-end manner.

2.2 REINFORCEMENT LEARNING AS PROBABILISTIC INFERENCE

Consider the graphical model in Fig[I] where O, is a binary variable equal to 1 if the action A; is
optimal at S;. The distribution over this optimality variable is defined with respect to the reward,
as: p(Oy = 118, Ay) = exp(r(S, Ay)) Maximizing likelihood of a state-action sequence being
optimal in this model translates to optimizing the sum of rewards (Levine, [2018).

Op [Oz [Oz)(O4
T\ O\ AN\t
A1) | A2 Az) | Ag

S1 = S2 (S5 (S84

Figure 1: Graphical model of the control task in reinforcement learning. O; is the optimality
indicator, with p(O; = 1|St, A;) = exp(r(st, at)), while Sy and A; are the state and action latent
variables.

The optimal policy can be computed through message passing, as in an HMM. Backward mes-
sages take the form: (:(S¢, At) = p(Ow7|St, A¢) or, by marginalizing over actions: [3;(S;) =
Sy p(Owr|Se, A)p(Ae|Si)dA = p(Oyr|St). These messages intuitively represent the probabil-
ity of following an optimal trajectory from state S; onwards. Messages are propagated recursively
through the graph as follows:

5t(St7At) :p(Ot|St,At)/P(St+1|St,At)ﬂt+1(st+1)d5t+1 (D
S

Note that the first factor is dependent on the immediate reward, while the second represents the
messages aggregated from all possible next states, with the “base case” message: Sr(sr,ar) =
p(Or|sT, ar). In log-space, the backward messages become soft variants of (S, A¢) and V' (S;).

3 METHOD

We will now describe how to use backward messages as potential-based reward shaping functions,
defined as: F(s,a,s’) = vB(s’) — B(s). We will estimate these messages by approximating Eq[l]
through a Graph Convolutional Network (GCN) (Kipf & Welling} 2016} |Defferrard et al., 2016)).

3.1 APPROXIMATING BACKWARD MESSAGES

GCNs have mainly been used in semi-supervised learning for labeling nodes on a graph. The in-
formation of the labeled nodes is propagated through the graph, leading to a probability distribution
defined over all nodes. The label propagation mechanism implemented by GCNs will be dependent
on the connections between nodes, as well as on their features.

We will apply GCNs on a graph in which each state is a node and edges represent a possible tran-
sition based on any action. We define the probability distribution of the GCN as representing the
probability of an optimal trajectory from a given state: Pgeon(s) = p(Orr|s) = B(s). GCNs use
a softmax output over a number of classes, in our case there are only two: an optimal trajectory or

Published as a paper at the RLGM workshop (ICLR 2019)

not. To see how the output of the GCN can approximate the message on states obtained through
inference, we need to look at the loss minimized by the network:

L= EO + n‘cprop (2)
L represents the supervised loss for the labels, trained by cross-entropy. The Lo propagation loss is
givenby Lyrop = >, 5 Aijl|Pcon (X)) —Paon (Xi)] |2. The recursive update of Eq.averages the
neighboring messages through the transition dynamics p(S; 115, A;) while the GCN’s propagation
loss in Eq. 2]combines them through the graph Laplacian. To see this, recall that the graph Laplacian
operator is given by:

Lf(si) = ZAij (f(si) = f(s5)) 3)

J
where f is a function on nodes and A;; is the adjacency matrix entry for nodes 7 and j. In our
case, f(s) will correspond to backward messages §(s). We implement the base case through the

supervised loss £y = Zﬁw B ﬁilog(@GCN(si)) where B is the set of base messages given by
B(si) = o(r(s;,a;)) for states with non-zero rewards.

3.2 QUALITATIVE ILLUSTRATION

(a) n = 0.0001 (b)n = 0.1 (©)n=10

Figure 2: Comparison of the output of GCN as the potential function for different values of 7 in
Eq.[2l which controls the complexity of the output. The figures show the output after convergence on
the PointMassMaze-v0 environment, depicted in Figlda] Lower values of 7 lead to less propagation
and therefore a more simple, yet biased, output. As 7 increases, the output shows more complex
structure, notably the position of the walls becomes more evident.

To get a better sense of how the GCN operates, we study the effect of the the hyperparameter which
mediates between Ly and L. Fig. |2| illustrates the result of varying 7 in the PointMassMaze-v0
environmen shown in Figldl In the original formulation, Kipf & Welling| (2016) chose the value
of 1 as zero as it is believed that the architectural bias of the GCN already implicitly implements
this loss. In our experiments we have found that this hyperparameter can play an important role in
the outcome. In Figlal we see that for a low value of 7, the GCN outputs a simple solution where
the states on the left have a low value (blue) while states on right have a higher value (yellow),
which matches the position of the goal and the starting states. This solution has a greater bias than
variance as it favors a simple output. As we increase the value of 7, the propagation loss has greater
importance and the output @5y shows more complexity, incorporating more information about
the dynamics, such as walls and the specific position of the goal. There exists an interesting parallel
with the A parameter in the TD(\) algorithm: A controls the trade-off between bias and variance of
the return estimation, while 7 controls the bias-variance trade-off of the diffusion process.

4 EXPERIMENTS

4.1 TABULAR CASE

We explore the classic FourRooms domain with different sizes (13x13, 22x22) and the more chal-
lenging Maze domain. The results are shown in Fig.[3] in the form of cumulative steps (i.e. regret).
We compare our approach, denoted A2C + P ¢, to a regular actor-critic algorithm using TD())
returns for the critic, denoted A2C +\. When we use the learned reward shaping function @, we
notice significant improvements over the classic actor-critic algorithm. We also compare our method
to an expert-based approach for designing reward shaping functions, in which we define ®cypert(s)
as the distance between any state s and the position of the goal. Surprisingly, even though ® ¢ pert ()
essentially provides the perfect reward shaping function an agent would need to solve the task, our
approximation ®cn achieves similar, though not as good, results on all tasks.

Published as a paper at the RLGM workshop (ICLR 2019)

Cumulative Steps

Cumulative Steps

Cumulative Steps

‘Ep\sb’des s ' Episod’es oo ’ épisodeé

Figure 3: Results on tabular domains for single-goal environments. Cumulative steps for each

configuration of the FourRooms domain (13x13, 22x22 and 29x29) and the Maze domain. As the
complexity of the environment increases, we notice a clear advantage in using reward shaping.

4.2 CONTINUOUS CONTROL

Results on PointMassMaze-v0 Results on PointMassMulti-v0

w= ~— ors

Average Rewards

Episodes Episodes Episodes

() (b) (©)

Figure 4: Results on continuous control: a) PointMassMaze-v0 is a task where the agent (blue
mass) has to get to the goal (green). For this environment, we only report the random seeds for
which the agent has visited the goal state. b) PointMassMulti-v0 is a similar environment, but it
contains a red region where the agent gets a negative reward. c) SparserHalfCheetah-v0 is a sparse
variant of HalfCheetah-v0 (Brockman et al., [2016).

We further study how @y can improve performance in continuous control. In the case of con-
tinuous states, it becomes intractable to represent all the possible transitions and states in the envi-
ronment. To overcome this challenge, we will only sample at intervals the possible transitions in
order to approximate the underlying graph. In the environments that we investigate, presented in
Fig. [it would be challenging to provide the agent with a beneficial hand-crafted reward shaping
function. The first environment is PointMassMaze-v0 where the agent (blue dot) has to navigate
to the goal (green), where it receives +1 reward. In the second environment, PointMassMulti-vO0,
the agent has to navigate to the green goal while avoiding the dangerous region defined by the red
square, which leads to negative reward. In both environments the actions are continuous. The last
environment, SparserHalfCheetah-v0, is much more challenging. It is a very sparse variant of the
classic HalfCheetah-v0 defined in OpenAl’s Gym |Brockman et al.[|(2016)), in which the agent only
receives a reward signal for reaching a distance of 15 units from the starting position (the HalfChee-
tah can only move in the x axis). When the agent reaches this distance, a reward of +1 is given and
the episode terminates. As an additional baseline, we provide a reward shaping function that would
naively implement the Lo distance between any state and the goal position. We plot the results in
Fig.[d which shows a clear advantage in using ®¢cn as a reward shaping function, indicating that
our method is able to naturally scale to more complex environments.

5 CONCLUSION AND FUTURE WORK

We presented a method for learning a scalable reward shaping function by using GCNs for prop-
agating messages from rewarding states. We showed how the propagation rule of the GCN can
approximate the backward messages defined in the probabilistic view of reinforcement learning. We
showed empirical evidence that our method can lead to faster learning through better exploitation
of the reward signal. Given the recent rise of interest in graph representation learning, it would
interesting to investigate further connections with reinforcement learning. In particular, in this work
we did not consider constructing the full graph of the underlying MDP (we also did not estimate
the transition probabilities). Instead, we sampled trajectories and constructed subgraphs based on
these samples. With this strategy, we are still able to implicitly represent the dynamics of the en-

Published as a paper at the RLGM workshop (ICLR 2019)

vironments, as shown in the plots of Section 3. However, recent advances in graph representation
learning (Ying et al., [2018)) would potentially allow us to explicitly represent the whole underlying
graph and transition dynamics. This approach could then, similarly to SLAM (Durrant-Whyte &
Baileyl 2006)), be used to perform optimal path planning.

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
Concrete problems in Al safety. CoRR, abs/1606.06565, 2016. URL http://arxiv.org/
abs/1606.06565.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL |http://arxiv.org/
abs/1606.01540.

Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E. Taylor, and Ann
Nowé. Reinforcement learning from demonstration through shaping. In Proceedings of the 24th
International Conference on Artificial Intelligence, IJCAT’ 15, pp. 3352-3358. AAAI Press, 2015.
ISBN 978-1-57735-738-4. URL http://dl.acm.org/citation.cfm?id=2832581.
28327716l

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. CoRR, abs/1606.09375, 2016. URL http:
//arxiv.org/abs/1606.09375.

Hugh Durrant-Whyte and Tim Bailey. Simultaneous localisation and mapping (slam): Part i the
essential algorithms. IEEE ROBOTICS AND AUTOMATION MAGAZINE, 2:2006, 2006.

Anna Harutyunyan, Tim Brys, Peter Vrancx, and Ann Nowé. Shaping mario with human ad-
vice. In Proceedings of the 2015 International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 15, pp. 1913-1914, Richland, SC, 2015. International Foundation
for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-3413-6. URL http:
//dl.acm.org/citation.cfm?id=2772879.2773501l

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
CoRR, abs/1805.00909, 2018. URL http://arxiv.org/abs/1805.00909.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the Sixteenth International Confer-
ence on Machine Learning, ICML °99, pp. 278-287, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-612-2. URL http://dl.acm.org/citation.
cfm?1d=645528.657613.

Pierre-Yves Oudeyer and Frédéric Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in Neurorobotics, 1:245 — 270, 2007.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference (extended abstract). In Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence, IICAI *13, pp. 3052-3056. AAAI
Press, 2013. ISBN 978-1-57735-633-2. URL http://dl.acm.org/citation.cfm?id=
2540128.2540576.

J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (19902010). IEEE Trans-
actions on Autonomous Mental Development, 2(3):230-247, Sep. 2010. ISSN 1943-0604. doi:
10.1109/TAMD.2010.2056368.

S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg. Intrinsically motivated reinforcement learning: An
evolutionary perspective. IEEE Transactions on Autonomous Mental Development, 2(2):70-82,
June 2010. ISSN 1943-0604. doi: 10.1109/TAMD.2010.2051031.

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://dl.acm.org/citation.cfm?id=2832581.2832716
http://dl.acm.org/citation.cfm?id=2832581.2832716
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1606.09375
http://dl.acm.org/citation.cfm?id=2772879.2773501
http://dl.acm.org/citation.cfm?id=2772879.2773501
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1805.00909
http://dl.acm.org/citation.cfm?id=645528.657613
http://dl.acm.org/citation.cfm?id=645528.657613
http://dl.acm.org/citation.cfm?id=2540128.2540576
http://dl.acm.org/citation.cfm?id=2540128.2540576

Published as a paper at the RLGM workshop (ICLR 2019)

Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous state
markov decision processes. In Proceedings of the 23rd International Conference on Machine
Learning, ICML °06, pp. 945-952, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-
2. doi: 10.1145/1143844.1143963. URL http://doi.acm.org/10.1145/1143844.
1143963.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. CoRR,
abs/1806.01973, 2018. URL http://arxiv.org/abs/1806.01973.

http://doi.acm.org/10.1145/1143844.1143963
http://doi.acm.org/10.1145/1143844.1143963
http://arxiv.org/abs/1806.01973

	Introduction
	Background and Motivation
	Reward Shaping
	Reinforcement learning as probabilistic inference

	Method
	Approximating backward messages
	Qualitative illustration

	Experiments
	Tabular case
	Continuous control

	Conclusion and future work

